Cyclopropane fatty acids (CPFA), as lactobacillic acid and dihydrosterculic acid, are components of bacterial membranes and have been recently detected in milk and in dairy products from cows fed with corn silage. In this paper, a specific quantitative gas chromatography-mass spectrometry (GC-MS) method for the detection of CPFA in cheeses was developed, and the quality parameters of the method (limit of detection, limit of quantitation, and intralaboratory precision) were assessed. Limit of detection and quantitation of CPFA were, respectively, 60 and 200 mg/kg of cheese fat, and the intralaboratory precision, determined on three concentration levels, satisfied the Horwitz equation. This method was applied to 304 samples of PDO cheeses of certified origin, including Parmigiano Reggiano (Italy), Grana Padano (Italy), Fontina (Italy), Comté (France), and Gruyère (Switzerland). Results showed that CPFA were absent in all of the cheeses whose Production Specification Rules expressly forbid the use of silages (Parmigiano Reggiano, Fontina, Comté, and Gruyère). CPFA were instead present in variable concentrations (300-830 mg/kg of fat) in all of the samples of Grana Padano cheese (silages admitted). A mix of grated Parmigiano Reggiano and Grana Padano was also prepared, showing that the method is able to detect the counterfeiting of Parmigiano Reggiano with other cheeses up to 10-20% Grana Padano content. These results support the hypothesis that CPFA can be used as a marker of silage feedings for cheeses, and the data reported can be considered a first attempt to create a database for CPFA presence in PDO cheeses.
Cheese microbiota contribute significantly to the final characteristics of cheeses due to the growth and interaction between cheese microorganisms during processing and ripening. For raw milk cheeses, such as Parmigiano Reggiano (PR), the microbiota derive from the raw milk itself, the dairy environment, and the starter. The process of cheese making and time of ripening shape this complex ecosystem through the selection of different species and biotypes that will drive the quality of the final product by performing functions of their metabolism such as proteolysis. The diversity in the final peptide and amino acid composition of the cheese is thus mostly linked to the diversity of this microbiota. The purpose of this study was to get more insight into the factors affecting PR cheese diversity and, more specifically, to evaluate whether the composition of the bacterial community of cheeses along with the specific peptide composition are more affected by the ripening times or by the cheese making process. To this end, the microbiota and the peptide fractions of 69 cheese samples (from curd to cheese ripened 24 months) were analyzed during 6 complete PR production cycles, which were performed in six different dairies located in the PR production area. The relation among microbial dynamics, peptide evolution, and ripening times were investigated in this unique and tightly controlled production and sampling set up. The study of microbial and peptide moieties in products from different dairies – from curd to at least 12 months, the earliest time from which the cheese can be sold, and up to a maximum of 24 months of ripening – highlighted the presence of differences between samples coming from different dairies, probably due to small differences in the cheese making process. Besides these differences, however, ripening time had by far the greatest impact on microbial dynamics and, consequently, on peptide composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.