In the literature, many applications of Digital Twin methodologies in the manufacturing, construction and oil and gas sectors have been proposed, but there is still no reference model specifically developed for risk control and prevention. In this context, this work develops a Digital Twin reference model in order to define conceptual guidelines to support the implementation of Digital Twin for risk prediction and prevention. The reference model proposed in this paper is made up of four main layers (Process industry physical space, Communication system, Digital Twin and User space), while the implementation steps of the reference model have been divided into five phases (Development of the risk assessment plan, Development of the communication and control system, Development of Digital Twin tools, Tools integration in a Digital Twin perspective and models and Platform validation). During the design and implementation phases of a Digital Twin, different criticalities must be taken into consideration concerning the need for deterministic transactions, a large number of pervasive devices, and standardization issues. Practical implications of the proposed reference model regard the possibility to detect, identify and develop corrective actions that can affect the safety of operators, the reduction of maintenance and operating costs, and more general improvements of the company business by intervening both in strictly technological and organizational terms.
Despite the extensive use of ejectors in the process industry, it is complex to predict suction and motive fluids mixture characteristics, especially with multiphase flows, even if, in most cases, mixture pressure control is necessary to satisfy process requirements or to avoid performance problems. The realization of an ejector model can allow the operators to overcome these difficulties to have real-time control of the system performance. In this context, this work proposes a framework for developing a Digital Twin of an ejector installed in an experimental plant able to predict the future state of an item and the impact of negative scenarios and faults diagnosis. ANNs have been identified as the most used tool for simulating the multiphase flow ejector. Nevertheless, the complexity in defining their structure and the computational effort to train and use them are not suitable for realizing standalone applications onboard the ejector. The proposed paper shows how Swarm Intelligence algorithms require a low computational complexity and overperform prediction error and computational effort. Specifically, the Grey Wolf optimizer proves to be the best one among those analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.