The Internet of Things (IoT) and Industrial IoT (IIoT) have developed rapidly in the past few years, as both the Internet and "things" have evolved significantly. "Things" now range from simple Radio Frequency Identification (RFID) devices to smart wireless sensors, intelligent wireless sensors and actuators, robotic things, and autonomous vehicles operating in consumer, business, and industrial environments. The emergence of "intelligent things" (static or mobile) in collaborative autonomous fleets requires new architectures, connectivity paradigms, trustworthiness frameworks, and platforms for the integration of applications across different business and industrial domains. These new applications accelerate the development of autonomous system design paradigms and the proliferation of the Internet of Robotic Things (IoRT). In IoRT, collaborative robotic things can communicate with other things, learn autonomously, interact safely with the environment, humans and other things, and gain qualities like self-maintenance, self-awareness, self-healing, and fail-operational behavior. IoRT applications can make use of the individual, collaborative, and collective intelligence of robotic things, as well as information from the infrastructure and operating context to plan, implement and accomplish tasks under different environmental conditions and uncertainties. The continuous, real-time interaction with the environment makes perception, location, communication, cognition, computation, connectivity, propulsion, and integration of federated IoRT and digital platforms important components of new-generation IoRT applications. This paper reviews the taxonomy of the IoRT, emphasizing the IoRT intelligent connectivity, architectures, interoperability, and trustworthiness framework, and surveys the technologies that enable the application of the IoRT across different domains to perform missions more efficiently, productively, and completely. The aim is to provide a novel perspective on the IoRT that involves communication among robotic things and humans and highlights the convergence of several technologies and interactions between different taxonomies used in the literature.
Presents the use of a 3D eddy current FE procedure for the analysis and design of two different induction machine structures: a radial and an axial machine. In the first case, attention is devoted to the simulation of locked rotor conditions and a linear 3D time harmonic eddy current FE analysis has been employed. The obtained results have been compared to 2D analysis and experimental data. The axial flux machine is analyzed under fixed speed conditions and a 3D time‐stepping and velocity eddy current problems are solved to evaluate machine performances. Different design configurations are analyzed in order to define the best solution.
The automotive semiconductor market is currently valued at around $10 billion worldwide, and is expected to rise to more than $14 billion by 2014. The steep rise of power modules for hybrid and electric vehicles is not yet included in this prognosis. Electronic systems have been the most rapidly growing element of vehicles in recent years, and this trend rise sharply with the introduction of electric vehicles (EVs) and hybrid electric vehicles (HEVs). The key parameters that determine the suitability of a power device for high temperature environment are the devices maximum allowable junction temperature and its conduction loss. The power devices are cooled to an extent that their junction temperatures do not exceed the maximum allowable value. Increasing the maximum junction temperature allows a higher base plate or heat sink temperature. A higher heat sink temperature, allows a higher ambient air temperature or coolant temperature. The semiconductor devices with low conduction loss will generate less heat, and allows a higher heat sink temperature. The paper presents the developments of a novel 400V IGBT based power module well suitable for electric vehicle applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.