The light-induced double-bond isomerization of the visual pigment rhodopsin operates a molecular-level optomechanical energy transduction, which triggers a crucial protein structure change. In fact, rhodopsin isomerization occurs according to a unique, ultrafast mechanism that preserves mode-specific vibrational coherence all the way from the reactant excited state to the primary photoproduct ground state. The engineering of such an energy-funnelling function in synthetic compounds would pave the way towards biomimetic molecular machines capable of achieving optimum light-to-mechanical energy conversion. Here we use resonance and off-resonance vibrational coherence spectroscopy to demonstrate that a rhodopsin-like isomerization operates in a biomimetic molecular switch in solution. Furthermore, by using quantum chemical simulations, we show why the observed coherent nuclear motion critically depends on minor chemical modifications capable to induce specific geometric and electronic effects. This finding provides a strategy for engineering vibrationally coherent motions in other synthetic systems.
A new family of light-driven molecular rotary motors utilizing the fulgide motif is proposed and its prototype molecule is studied by quantum chemical calculations and nonadiabatic molecular dynamics simulations. The new motor performs pure unidirectional axial rotation of the rotor blade with high quantum efficiency (ϕ ∼ 0.55-0.68) and ultrafast dynamics (⟨ t⟩ ∼ 200-300 fs) of its successive photoisomerization steps. The photocyclization reaction typical of fulgide compounds is blocked by the design of the new motor and never occurred in the molecular dynamics simulations. The new motors can be synthesized from easily available precursors. In view of its remarkable photoisomerization ability, the new motor represents a prospective class of compounds for the use in nanosized molecular devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.