In this paper, the results obtained from lab tests on twisted pairs subjected to different voltage waveforms and atmospheric conditions are used to propose how to modify the IEC Std. 60034-18-41. The goal is to make the standard suitable for the More Electrical Aircraft (MEA). The results show that it is initially necessary to screen out materials through simple tests. The enhancement factors for temperature can be modified to consider reduced pressures and temperatures using a simple model. The aging enhancement factor can be reduced considering the reduced sensitivity of the partial discharge inception voltage (PDIV) at low pressures on the enamel thickness. Eventually, reference will be made to the drive discussed in Part I of this series to draw conclusions about the likelihood of partial discharge inception in a random wound stator and how to reduce it by modifying either the inverter or the stator insulation. Reference to a random wound motor is made throughout the paper.
The arrival on the market of new power devices based on wide bandgap semiconductors has raised a relevant interest due to their superior properties compared to conventional technologies. On the other hand, these devices are inherently characterized by high rates of voltage changes over time, which may result in reliability challenges in electric drives adopting them. In fact, dangerous voltage overshoots at the motor terminals and uneven voltage distributions within the machine windings may occur. These phenomena can trigger a high insulation stress and partial discharges and, as a consequence, they may concur to the premature failure of the dielectric materials. This paper proposes a flexible and comprehensive modelling approach for the accurate analysis and estimation of both voltage overshoots and voltage distributions in a typical converter-cable-motor system intended for more electric aircraft applications. The modelling results are validated against experimental measurements carried out on a physical prototype comprising a wide bandgapbased converter, a connecting cable and an electrical machine stator. The findings are then used in the companion papers (part II and part III) to investigate the dependence of partial discharge phenomena on these voltage waveforms, highlight reliability challenges in modern 270 V DC bus voltage drives for the more electric aircraft and discuss solutions.
The use of wide band gap devices in power converters is becoming more and more popular since they enable operations at higher switching frequencies, voltages and temperatures compared to traditional power semiconductors, while also improving the efficiency. However, in electric drives, they also tend to increase voltage overshoots at motor terminals and to produce uneven voltage distributions across stator windings, due to their high rate of voltage change over time (dv/dt). In order to mitigate these issues, passive filters can be employed. The aim of this paper is to give an overview of possible solutions based on passive filters, analyzing the main advantages and drawbacks. A comprehensive, qualitative comparative study is carried out taking into account common mode currents reduction, power losses, costs, dimensions and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.