Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning
The EU Biodiversity strategy aims to plant 3 billion trees by 2030, in order to improve ecosystem restoration and biodiversity. Here, we compute the land area that would be required to support this number of newly planted trees by taking account of different tree species and planting regimes across the EU member states. We find that 3 billion trees would require a total land area of between 0.81 and 1.37 Mha (avg. 1.02 Mha). The historic forest expansion in the EU since 2010 was 2.44 Mha, meaning that despite 3 billion trees sounding like a large number this target is considerably lower than historic afforestation rates within the EU, i.e. only 40% of the past trend. Abandoned agricultural land is often proposed as providing capacity for afforestation. We estimate agricultural abandoned land areas from the HIstoric Land Dynamics Assessment+ (HILDA+) database using two time thresholds (abandonment since 2009 or 2014) to identify potential areas for tree planting. The area of agricultural abandoned land was 2.6 Mha (potentially accommodating 7.2 billion trees) since 2009 and 0.2 Mha (potentially accommodating 741 million trees) since 2014. Our study highlights that sufficient space could be available to meet the 3 billion tree planting target from abandoned land. However, large-scale afforestation beyond abandoned land could have displacement effects elsewhere in the world because of the embodied deforestation in the import of agricultural crops and livestock. This would negate the expected benefits of EU afforestation. Hence, the EU’s relatively low ambition on tree planting may actually be better in terms of avoiding such displacement effects. We suggest that tree planting targets should be set at a level that considers physical ecosystem dynamic as well as socio-economic condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.