Hybridisation and polyploidy are major forces contributing to plant speciation. Homoploid (2x) and heteroploid (3x) hybrids, however, represent critical stages for evolution due to disturbed meiosis and reduced fertility. Apomixis – asexual reproduction via seeds – can overcome hybrid sterility, but requires several concerted alterations of developmental pathways to result in functional seed formation.Here, we analyse the reproductive behaviours of homo- and heteroploid synthetic hybrids from crosses between sexual diploid and tetraploid Ranunculus auricomus species to test the hypothesis that developmental asynchrony in hybrids triggers the shift to apomictic reproduction.Evaluation of male and female gametophyte development, viability and functionality of gametes shows developmental asynchrony, whereas seed set and germinability indicate reduced fitness in synthetic hybrids compared to sexual parents. We present the first experimental evidence for spontaneous apospory in most hybrids as an alternative pathway to meiosis, and the appearance of functional apomictic seeds in triploids. Bypassing meiosis permits these triploid genotypes to form viable seed and new polyploid progeny.Asynchronous development causes reduced sexual seed set and emergence of apospory in synthetic Ranunculus hybrids. Apomixis is functional in triploids and associated with drastic meiotic abnormalities. Selection acts to stabilise developmental patterns and to tolerate endosperm dosage balance shifts which facilitates successful seed set and establishment of apomictic lineages.
Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated “Tyba” and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle–dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.
Asexual lineages are thought to be prone to extinction because of deleterious mutation accumulation (Muller's ratchet). Here, we analyse genomic effects of hybridity, polyploidy and allelic divergence in apomictic plants, and identify loci under divergent selection among sexual/apomictic lineages. RNAseq was used to sequence the flower-specific transcriptomes of five genotypes of the Ranunculus auricomus complex, representing three sexual and two apomictic reproductive biotypes. The five sequence libraries were pooled and de novo assembly performed, and the resultant assembly was used as a backbone for a subsequent alignment of each separate library. High-quality single-nucleotide (SNP) and insertion-deletion (indel) polymorphisms were mined from each library. Annotated genes for which open reading frames (ORF) could be determined were analysed for signatures of divergent versus stabilizing selection. A comparison between all genotypes supports the hypothesis of Pleistocene hybrid origin of both apomictic genotypes from R. carpaticola and R. cassubicifolius, with subsequent allelic divergence of apomictic lineages (Meselson effect). Pairwise comparisons of nonsynonymous (dN) to synonymous (dS) substitution rate ratios between apomictic and sexual genotypes for 1231 genes demonstrated similar distributions for all comparisons, although 324 genes demonstrated outlier (i.e. elevated) dN/dS ratios. Gene ontology analyses of these outliers revealed significant enrichment of genes associated with reproduction including meiosis and gametogenesis, following predictions of divergent selection between sexual and apomictic reproduction, although no significant signal of genome-wide mutation accumulation could be identified. The results suggest that gene function should be considered in order to understand effects of mutation accumulation in asexual lineages.
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of Cannabis and Humulus, including medicinal and industrial applications. We demonstrate that current Cannabis genome assemblies are incomplete, with ∼10% missing, 10–25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.
BackgroundApomixis, a natural form of asexual seed production in plants, is considered to have great biotechnological potential for agriculture. It has been hypothesised that de-regulation of the sexual developmental pathway could trigger apomictic reproduction. The genus Boechera represents an interesting model system for understanding apomixis, having both sexual and apomictic genotypes at the diploid level. Quantitative qRT-PCR is the most extensively used method for validating genome-wide gene expression analyses, but in order to obtain reliable results, suitable reference genes are necessary. In this work we have evaluated six potential reference genes isolated from a 454 (FLX) derived cDNA library of Boechera. RNA from live microdissected ovules and anthers at different developmental stages, as well as vegetative tissues of apomictic and sexual Boechera, were used to validate the candidates.ResultsBased on homologies with Arabidopsis, six genes were selected from a 454 cDNA library of Boechera: RPS18 (Ribosomal sub protein 18), Efalpha1 (Elongation factor 1 alpha), ACT 2 (Actin2), UBQ (polyubiquitin), PEX4 (Peroxisomal ubiquitin conjugating enzyme) and At1g09770.1 (Arabidopsis thaliana cell division cycle 5). Total RNA was extracted from 17 different tissues, qRT-PCRs were performed, and raw Ct values were analyzed for primer efficiencies and gene ratios. The geNorm and normFinder applications were used for selecting the most stable genes among all tissues and specific tissue groups (ovule, anthers and vegetative tissues) in both apomictic and sexual plants separately. Our results show that BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ were the most stable genes. Based on geNorm, the combinations of BoechRPS18 and BoechEfα1 or BoechUBQ and BoechEfα1 were the most stable in the apomictic plant, while BoechRPS18 and BoechACT2 or BoechUBQ and BoechACT2 performed best in the sexual plant. When subgroups of tissue samples were analyzed, different optimal combinations were identified in sexual ovules (BoechUBQ and BoechEfα1), in anthers from both reproductive systems (BoechACT2 and BoechEfα1), in apomictic vegetative tissues (BoechEfα1 and BoechACT2) and sexual vegetative tissues (BoechRPS18 and BoechEfα1). NormFinder ranked BoechACT2 as the most stable in the apomictic plant, while BoechRPS18 was the best in the sexual plant. The subgroups analysis identified the best gene for both apomictic and sexual ovules (BoechRPS18), for anthers from both reproductive system (BoechEfα1) and for apomictic and vegetative tissues (BoechACT2 and BoechRPS18 respectively)ConclusionsFrom a total of six tested genes, BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ showed the best stability values. We furthermore provide detailed information for the accurate normalization of specific tissue gene expression analyses of apomictic and sexual Boechera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.