We study the problem of estimating the ridges of a density function. Ridge estimation is an extension of mode finding and is useful for understanding the structure of a density. It can also be used to find hidden structure in point cloud data. We show that, under mild regularity conditions, the ridges of the kernel density estimator consistently estimate the ridges of the true density. When the data are noisy measurements of a manifold, we show that the ridges are close and topologically similar to the hidden manifold. To find the estimated ridges in practice, we adapt the modified mean-shift algorithm proposed by Ozertem and Erdogmus [J. Mach. Learn. Res. 12 (2011) 1249-1286]. Some numerical experiments verify that the algorithm is accurate.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1218 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
We find lower and upper bounds for the risk of estimating a manifold in Hausdorff distance under several models. We also show that there are close connections between manifold estimation and the problem of deconvolving a singular measure.Comment: Published in at http://dx.doi.org/10.1214/12-AOS994 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
We consider the problem of estimating filamentary structure from planar point process data. We make some connections with computational geometry and we develop nonparametric methods for estimating the filaments. We show that, under weak conditions, the filaments have a simple geometric representation as the medial axis of the data distribution's support. Our methods convert an estimator of the support's boundary into an estimator of the filaments. We also find the rates of convergence of our estimators. * Thanks to Pierpaolo Brutti for pointing us to some useful references and Tony Cai for helpful comments.
We derive nonparametric confidence intervals for the eigenvalues of the Hessian at modes of a density estimate. This provides information about the strength and shape of modes and can also be used as a significance test. We use a datasplitting approach in which potential modes are identified using the first half of the data and inference is done with the second half of the data. To get valid confidence sets for the eigenvalues, we use a bootstrap based on an elementarysymmetric-polynomial (ESP) transformation. This leads to valid bootstrap confidence sets regardless of any multiplicities in the eigenvalues. We also suggest a new method for bandwidth selection, namely, choosing the bandwidth to maximize the number of significant modes. We show by example that this method works well. Even when the true distribution is singular, and hence does not have a density, (in which case cross validation chooses a zero bandwidth), our method chooses a reasonable bandwidth.
We consider the problem of reliably finding filaments in point clouds. Realistic data sets often have numerous filaments of various sizes and shapes. Statistical techniques exist for finding one (or a few) filaments but these methods do not handle noisy data sets with many filaments. Other methods can be found in the astronomy literature but they do not have rigorous statistical guarantees. We propose the following method. starting at each data point we construct the steepest ascent path along a kernel density estimator. We locate filaments by finding regions where these paths are highly concentrated. Formally, we define the density of these paths and we construct a consistent estimator of this path density. © Institute of Mathematical Statistics, 2009
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.