To address the need of alternatives to autologous vessels for small-calibre vascular applications (e.g. cardiac surgery), a hybrid semi-degradable material composed of silk fibroin and polyurethane (Silkothane®) was herein used to fabricate very small-calibre grafts (innner diameter = 1.5 mm) via electrospinning. Hybrid grafts were in vitro characterized in terms of morphology and mechanical behaviour, and compared to similar grafts of pure silk fibroin. Similarly, two native vessels from a rodent model (abdominal aorta and vena cava) were harvested and characterized. Preliminary implants were performed on Lewis rats to confirm the suitability of Silkothane® grafts for small-calibre applications, specifically as aortic insertion and femoral shunt. The manufacturing process generated pliable grafts consisting of a randomized fibrous mesh and exhibiting similar geometrical features to rat aortas. Both Silkothane® and pure silk fibroin grafts showed radial compliances in the range from 1.37 ± 0.86 to 1.88 ± 1.01 % 10-2 mmHg-1, lower than that of native vessels. The Silkothane® small-calibre devices were also implanted in rats demonstrating to be adequate for vascular applications; all the treated rats survived the surgery for 3 months after implantation, and 16 rats out of 17 (94%) still showed blood flow inside the graft at sacrifice. The obtained results lay the basis for a deeper investigation of the interaction between the Silktohane® graft and the implant site, which may deal with further analysis on the potentialities in terms of degradability and tissue formation, on longer time-points.
Here we report that traps of Utricularia westonii from Utricularia sect. Tridentaria are working with a very effective suction mechanism, which was revealed and recorded during feeding experiments with cultivated specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.