Biochar nanoparticles (BC NPs), produced by low temperature pyrolysis (350 °C) of microalgae (Nannochloropsis sp.) and nutshells, are proposed as low-cost and sustainable co-catalysts to promote the photocatalytic activity of TiO2 nanotube (NT) arrays towards the degradation of methylene blue (MB) used as an organic pollutant model molecule. BC NPs (size < 25 nm) were obtained by treating bulk BC (i.e., biomass after pyrolysis) by sonication–centrifugation cycles in a water solution. The filtered BC NPs dispersion was deposited by simple drop-casting on the TiO2 NT support. The BC loading was varied by performing multiple depositions. Photocatalytic experiments under UV light (365 nm) revealed that the decoration with BC NPs significantly improves the TiO2 photoactivity. Such enhancement is mainly influenced by the amount of BC deposited; upon optimizing the BC deposition conditions, the rate of photocatalytic degradation of MB increases approximately three times with respect to bare TiO2, almost irrespective of the nature of the raw material. The greater photocatalytic activity of BC-TiO2 can be attributed to the synergistic combination of reactant/product adsorption and catalytic degradation of the adsorbed organic pollutant, as well as an improved charge carrier separation and electron transfer.
The complete dissolution of silicate-containing materials, often necessary for elemental determination, is generally performed by microwave-assisted digestion involving the forced use of hydrofluoric acid (HF). Although highly efficient in dissolving silicates, this acid exhibits many detrimental effects (e.g., formation of precipitates, corrosiveness to glassware) that make its removal after digestion essential. The displacement of HF is normally achieved by evaporation in open-vessel systems: atmospheric contamination or loss of analytes can occur when fuming-off HF owing to the non-ultraclean conditions necessarily adopted for safety reasons. This aspect strongly hinders determination at the ultra-trace level. To overcome this issue, we propose a clean and safe microwave-assisted procedure to induce the evaporative migration of HF inside a sealed “vessel-inside-vessel” system: up to 99.9% of HF can be removed by performing two additional microwave cycles after sample dissolution. HF migrates from the digestion solution to a scavenger (ultrapure H2O) via a simple physical mechanism, and then, it can be safely dismissed/recycled. The procedure was validated by a soil reference material (NIST 2710), and no external or cross-contamination was observed for the 27 trace elements studied. The results demonstrate the suitability of this protocol for ultra-trace analysis when the utilization of HF is mandatory.
In this work, NiCu co‐catalysts on TiO2 are studied for photocatalytic hydrogen evolution. NiCu co‐catalyst films are deposited at room temperature by argon plasma sputtering on high aspect‐ratio anodic TiO2 nanotubes. To tune the Ni : Cu atomic ratio, alloys of various compositions were used as sputtering targets. Such co‐catalyst films are found to be amorphous with small nanocrystalline domains. A series of parameters is investigated, i. e., i) Ni : Cu relative ratio in the sputtered films, ii) NiCu film thickness, and iii) thickness of the TiO2 nanotube layers. The highest photocatalytic activity is obtained with 8 μm long TiO2 nanotubes, sputter‐coated with a 10 nm‐thick NiCu films with a 1 : 1 Ni : Cu atomic ratio. This photocatalyst reaches a stable hydrogen evolution rate of 186 μL h−1 cm−2, 4.6 and 3 times higher than that of Ni‐ and Cu‐TiO2, respectively, demonstrating a synergistic co‐catalytic effect of Ni and Cu in the alloy co‐catalyst film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.