The W boson mass is measured using proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV corresponding to an integrated luminosity of 1.7 fb−1 recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/pT distribution of a sample of W → μν decays and the ϕ* distribution of a sample of Z → μμ decays the W boson mass is determined to be$$ {m}_w=80354\pm {23}_{\mathrm{stat}}\pm {10}_{\mathrm{exp}}\pm {17}_{\mathrm{theory}}\pm {9}_{\mathrm{PDF}}\mathrm{MeV}, $$ m w = 80354 ± 23 stat ± 10 exp ± 17 theory ± 9 PDF MeV , where uncertainties correspond to contributions from statistical, experimental systematic, theoretical and parton distribution function sources. This is an average of results based on three recent global parton distribution function sets. The measurement agrees well with the prediction of the global electroweak fit and with previous measurements.
Objective. Time-of-flight-positron emission tomography would highly benefit from a coincidence time resolution (CTR) below 100 ps: improvement in image quality and patient workflow, and reduction of delivered dose are among them. This achievement proved to be quite challenging, and many approaches have been proposed and are being investigated for this scope. One of the most recent consists in combining different materials with complementary properties (e.g. high stopping power for 511 keV γ -ray and fast timing) in a so-called heterostructure, metascintillator or metapixel. By exploiting a mechanism of energy sharing between the two materials, it is possible to obtain a fraction of fast events which significantly improves the overall time resolution of the system. Approach. In this work, we present the progress on this innovative technology. After a simulation study using the Geant4 toolkit, aimed at understanding the optimal configuration in terms of energy sharing, we assembled four heterostructures with alternating plates of BGO and EJ232 plastic scintillator. We fabricated heterostructures of two different sizes (3 × 3 × 3 mm3 and 3 × 3 × 15 mm3), each made up of plates with two different thicknesses of plastic plates. We compared the timing of these pixels with a standard bulk BGO crystal and a structure made of only BGO plates (layered BGO). Main results. CTR values of 239 ± 12 ps and 197 ± 10 ps FWHM were obtained for the 15 mm long heterostructures with 100 µm and 200 µm thick EJ232 plates (both with 100 µm thick BGO plates), compared to 271 ± 14 ps and 303 ± 15 ps CTR for bulk and layered BGO, respectively. Significance. Significant improvements in timing compared to standard bulk BGO were obtained for all the configurations tested. Moreover, for the long pixels, depth of interaction (DOI) collimated measurements were also performed, allowing to validate a simple model describing light transport inside the heterostructure.
The demand for detectors with a time resolution below 100 ps is at the center of research in different fields, from high energy physics to medical imaging. In recent years, interest has grown in nanomaterials that, benefiting from quantum confinement effects, can feature ultra-fast scintillation kinetics and tunable emission. However, standard characterization methods for scintillation properties–relying on radiation sources with an energy range of several hundreds of keV–are not suitable for these materials due to their low stopping power, leading to a slowdown of this R&D line. We present a new method to characterize the time resolution and light output of scintillating materials, using a soft (0–40 keV energy) pulsed X-ray source and optimized high-frequency readout electronics. First, we validated the proposed method using standard scintillators. Then, we also demonstrated the feasibility to measure the time resolution and get an insight into the light output of nanomaterials (InGaN/GaN multi-quantum well and CsPbBr3 perovskite). This technique is, therefore, proposed as a fundamental tool for characterization of nanomaterials and, more in general, of materials with low stopping power to better guide their development. Moreover, it opens the way to new applications where fast X-ray detectors are requested, such as time-of-flight X-ray imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.