Traffic controllers regulate railway traffic by sequencing train movements and setting routes with the aim of ensuring smooth train behaviour and limiting, as much as possible, train delays. In this paper, we describe the implementation of a real-time traffic management system, called ROMA (Railway traffic Optimization by Means of Alternative graphs), to support controllers in the everyday task of managing disturbances. We make use of a branch-and-bound algorithm for sequencing train movements, while a local search algorithm is developed for rerouting optimization purposes. The compound problem of routing and sequencing trains is approached iteratively, computing an optimal train sequencing for given train routes and then improving this solution by locally rerouting some trains. An extensive computational study is carried out, based on a dispatching area of the Dutch railway network. We study practical size instances, and include in the model important operational constraints, including rolling stock and passenger connections. Different types of disturbances are analysed, including train delays and blocked tracks. Comparison with common dispatching practice shows the high potential of the system as an effective support tool to improve punctuality
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.