In this paper, an integrated approach targeting sustainability, safety, and resilience is envisioned for the renovation of the post-World War II RC buildings clustered in urban outskirts. The solution stems as an enhancement of the widespread camouflage practice, which targets energy efficiency and architectural restyling by complementing the building with a technological double skin, self-supported on an independent exoskeleton. Based on this integrated approach, the exoskeleton can be further engineered to also enable structural safety and resilience. Life cycle thinking is addressed to re-conceive traditional structural design approaches, guaranteeing safety, while minimizing costs and environmental impacts over the building life cycle. Accurate selection of materials and dry technologies enables adaptability, reparability and maintenance, and total recyclability/reuse at end-of-life. The intervention is carried out from outside, avoiding relocation of the inhabitants and possible building downtime. The paper introduces a possible framework for engineers, technologists, and architects to design new holistic renovation interventions, for which innovative solution sets are required. Possible structural techniques to be coupled with energy refurbishment are proposed. As a proof of concept, the envisaged holistic renovation strategy is applied to a reference building, and benefits entailed in combining structural safety measures within an integrated intervention are commented.
The paper presents the results of an experimental campaign on the behaviour of engineered masonry infill walls subjected to both in-and out-of-plane loading. The aim of the research was to develop a design approach for masonry infill walls capable of solving their vulnerability and detrimental interaction with the frame structure when exposed to seismic excitation. Tests on two large-scale specimens and sub-assemblies were performed in order to evaluate the infill deformation capacity, the damage associated with different drift levels, and the mechanical properties of the components. A design solution with sliding joints to reduce the infill-frame interaction and ensure out-of-plane stability, which was proposed in a previous study, was developed and refined with focus on construction details. The aim of sliding joints is to ensure a predetermined mechanism in the infill wall, which is governed by hierarchy of strength and is capable of ensuring ductility and energy dissipation that can be taken into account in the design practice, thanks to the predictability of the response. The two infill wall specimens, one of them including an opening, reached up to 3 % in-plane drift with very little damage and supported an out-of-plane force equivalent to a horizontal acceleration four times the acceleration of gravity. The force-displacement hysteretic curve, sliding at the joints and crack pattern show the efficiency of the construction technique, based on affordable and tradition-like construction processes and materials. The technique, presented here for hollow fired-clay masonry units, can be extended to different masonry infill typologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.