Abstract. Temporal drying of upper soil layers of acidic methanogenic peatlands might divert the flow of reductants from CH4 formation to other electron-accepting processes due to a renewal of alternative electron acceptors. In this study, we evaluated the in situ relevance of Fe(III)-reducing microbial activities in peatlands of a forested catchment that differed in their hydrology. Intermittent seeps reduced sequentially nitrate, Fe(III), and sulfate during periods of water saturation. Due to the acidic soil conditions, released Fe(II) was transported with the groundwater flow and accumulated as Fe(III) in upper soil layers of a lowland fen apparently due to oxidation. Microbial Fe(III) reduction in the upper soil layer accounted for 26.7 and 71.6% of the anaerobic organic carbon mineralization in the intermittent seep and the lowland fen, respectively. In an upland fen not receiving exogenous Fe, Fe(III) reduction contributed only to 6.7%. Fe(II) and acetate accumulated in deeper porewater of the lowland fen with maximum concentrations of 7 and 3 mM, respectively. Both supplemental glucose and acetate stimulated the reduction of Fe(III) indicating that fermentative, incomplete, and complete oxidizers were involved in Fe(II) formation in the acidic fen. Amplification of DNA yielded PCR products specific for Acidiphilium-, Geobacter-, and Geothrix-, but not for Shewanella- or Anaeroromyxobacter-related sequences. Porewater biogeochemistry observed during a 3-year-period suggests that increased drought periods and subsequent intensive rainfalls due to global climate change will further favor Fe(III) and sulfate as alternative electron acceptors due to the storage and enhanced re-oxidation of their reduced compounds in the soil.
Peatlands are sources of relevant greenhouse gases such as CH4, but the temporal presence of Fe(III) may inhibit methanogenesis. Because excess of carbon during the vegetation period might allow concomitant electron-accepting processes, Fe(III) reduction and methanogenesis were studied during an annual season in an acidic fen. The upper peat layer displayed the highest Fe(II)- and CH4-forming activities. The rates of Fe(II) formation did not change during the year and methanogenesis started mostly when Fe(II) formation reached a plateau. Most of the Fe(III) pool seemed to be bioavailable, and addition of nitrilotriacetic acid stimulated only light Fe(II) formation, whereas EDTA and anthraquinone-2,6-disulfonate had no effect. In the presence of an inhibitor for methanogenesis (sodium 2-bromoethanesulfonate), Fe(II) formation was inhibited to 45%. Addition of Fe(III) during ongoing methanogenesis led only to a partial inhibition of CH4 formation. The proportion of acetoclastic methanogenesis varied between 42% and 90%, but no trend with time was observed. The number of acetate-, ethanol- or lactate-utilizing Fe(III) reducers approximated 10(5)-10(6) cells g (fresh wt peat)(-1). Fermentative glucose-utilizing Fe(III)-reducers were most abundant. Our results suggest that (1) methanogens used Fe(III) as an electron acceptor and (2) fermenting bacteria, which do not compete with methanogens for common electron donors, dominated the reduction of Fe(III) in this fen.
Using a combination of cultivation-dependent and -independent methods, this study aimed to elucidate the diversity of microorganisms involved in iron cycling and to resolve their in situ functional links in sediments of an acidic lignite mine lake. Using six different media with pH values ranging from 2.5 to 4.3, 117 isolates were obtained that grouped into 38 different strains, including 27 putative new species with respect to the closest characterized strains. Among the isolated strains, 22 strains were able to oxidize Fe(II), 34 were able to reduce Fe(III) in schwertmannite, the dominant iron oxide in this lake, and 21 could do both. All isolates falling into the Gammaproteobacteria (an unknown Dyella-like genus and Acidithiobacillus-related strains) were obtained from the top acidic sediment zones (pH 2.8). Firmicutes strains (related to Bacillus and Alicyclobacillus) were only isolated from deep, moderately acidic sediment zones (pH 4 to 5). Of the Alphaproteobacteria, Acidocellarelated strains were only isolated from acidic zones, whereas Acidiphilium-related strains were isolated from all sediment depths. Bacterial clone libraries generally supported and complemented these patterns. Geobacterrelated clone sequences were only obtained from deep sediment zones, and Geobacter-specific quantitative PCR yielded 8 ؋ 10 5 gene copy numbers. Isolates related to the Acidobacterium, Acidocella, and Alicyclobacillus genera and to the unknown Dyella-like genus showed a broad pH tolerance, ranging from 2.5 to 5.0, and preferred schwertmannite to goethite for Fe(III) reduction. This study highlighted the variety of acidophilic microorganisms that are responsible for iron cycling in acidic environments, extending the results of recent laboratorybased studies that showed this trait to be widespread among acidophiles.
[1] Climate change models predict changes in precipitation patterns over the next several decades for northern temperate regions. Resulting fluctuations of the water level may drastically affect the source-sink functions of peatlands. Here, we manipulated the water table level in an acidic, minerotrophic fen using drying and rewetting experiments to simulate summer drought and heavy rainfalls to estimate changes in peat decomposition and source-sink functions. We found that carbon dioxide (CO 2 ) formation rates and exoenzymatic activities increased in the most active surface layer during the initial water table drawdown; however, extreme drying did not further increase these activities. Activity stimulated in deeper oxygenated peat layers did not substantially contribute to CO 2 emissions. Additionally, no phenol oxidase activity was determined. Rewetting of peat after drying did not lead to a CO 2 flush like in mineral soils. Water table manipulations yielded a higher availability of nitrate, ferric iron, and sulfate and prolonged the onset of methane formation. Sulfate was exported to a nearby stream. We concluded that the increasing frequency of extreme weather conditions like summer droughts and heavy rainfalls might not affect carbon storage but instead strengthen the sink function for nitrate and ferrous iron and the source function for sulfate in peatlands.Citation: Reiche, M., A. Hädrich, G. Lischeid, and K. Küsel (2009), Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen,
The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.