Indiscriminate activation of opioid receptors provides pain relief but also severe central and intestinal side effects. We hypothesized that exploiting pathological (rather than physiological) conformation dynamics of opioid receptor-ligand interactions might yield ligands without adverse actions. By computer simulations at low pH, a hallmark of injured tissue, we designed an agonist that, because of its low acid dissociation constant, selectively activates peripheral μ-opioid receptors at the source of pain generation. Unlike the conventional opioid fentanyl, this agonist showed pH-sensitive binding, heterotrimeric guanine nucleotide-binding protein (G protein) subunit dissociation by fluorescence resonance energy transfer, and adenosine 3',5'-monophosphate inhibition in vitro It produced injury-restricted analgesia in rats with different types of inflammatory pain without exhibiting respiratory depression, sedation, constipation, or addiction potential.
Novel pain killers without adverse effects are urgently needed. Opioids induce central and intestinal side effects such as respiratory depression, sedation, addiction, and constipation. We have recently shown that a newly designed agonist with a reduced acid dissociation constant (pKa) abolished pain by selectively activating peripheral μ-opioid receptors (MOR) in inflamed (acidic) tissues without eliciting side effects. Here, we extended this concept in that pKa reduction to 7.22 was achieved by placing a fluorine atom at the ethylidene bridge in the parental molecule fentanyl. The new compound (FF3) showed pH-sensitive MOR affinity, [35S]-GTPγS binding, and G protein dissociation by fluorescence resonance energy transfer. It produced injury-restricted analgesia in rat models of inflammatory, postoperative, abdominal, and neuropathic pain. At high dosages, FF3 induced sedation, motor disturbance, reward, constipation, and respiratory depression. These results support our hypothesis that a ligand’s pKa should be close to the pH of injured tissue to obtain analgesia without side effects.
Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.