In this paper, the authors present a 0D fluid dynamic model of a vane pump used to refill tanks with fuel. The model is entirely developed in OpenModelica environment, where the authors have created specific libraries of elements suitable for the physical modelling of fluid power components and systems. Among the different approaches, the zero-dimension (0D) fluid-dynamic modelling of positive displacement machines is suitable to study many aspects as: the instantaneous flow rate, pressure and torque transients, the fluid borne noise related to the flow rate and pressure irregularity, the dynamic behaviour of the variable displacement control. Overall, this approach in modelling allows to link the geometrical features of the machine with its dynamic behaviour and for this reason is particularly useful in guiding the design. The model of the vane pump is described together with the main design features that can be analysed in terms of their influence on the pump behaviour. Besides the specific results obtained regarding the design of the pump, the paper also demonstrates the use of OpenModelica language and environment, and its efficacy, into the applications of fluid power modelling and simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.