Surface photovoltage spectroscopy and spectral photoconductivity measurements have been carried out in the UV spectral region on GaN
nanowires to analyze the near band-edge region. The results reveal the presence of tails in the band−band absorption spectra. Surface
Photovoltage spectra performed on the as-grown nanowire ensamble show a long band tail of about 0.1 eV. Spectral photoconductivity on
singly contacted nanowires shows that the band tail width strictly depends on the wire diameter. These results are explained by the Franz−Keldysh effect due to the internal electric field induced by Fermi level pinning at the nanowire surface. The experimental values of the absorption
tail are well in agreement with the results obtained by simulating the electric field in a cylindrical model.
Improving materials used to make qubits is crucial to further progress in quantum information processing. Of particular interest are semiconductor-superconductor heterostructures that are expected to form the basis of topological quantum computing. We grow semiconductor indium antimonide nanowires that are coated with shells of tin of uniform thickness. No interdiffusion is observed at the interface between Sn and InSb. Tunnel junctions are prepared by in-situ shadowing. Despite the lack of lattice matching between Sn and InSb a 15 nm thick shell of tin is found to induce a hard superconducting gap, with superconductivity persisting in magnetic field up to 4T. A small island of Sn-InSb exhibits the two-electron charging effect. These findings suggest a less restrictive approach to fabricating superconducting and topological quantum circuits.
Micro and nanoplastics are fragments with dimensions less than a millimeter invading all terrestrial and marine environments. They have become a major global environmental issue in recent decades and, indeed, recent scientific studies have highlighted the presence of these fragments all over the world even in environments that were thought to be unspoiled. Analysis of micro/nanoplastics in isolated samples from abiotic and biotic environmental matrices has become increasingly common. Hence, the need to find valid techniques to identify these micro and nano-sized particles. In this review, we discuss the current and potential identification methods used in microplastic analyses along with their advantages and limitations. We discuss the most suitable techniques currently available, from physical to chemical ones, as well as the challenges to enhance the existing methods and develop new ones. Microscopical techniques (i.e., dissect, polarized, fluorescence, scanning electron, and atomic force microscopy) are one of the most used identification methods for micro/nanoplastics, but they have the limitation to produce incomplete results in analyses of small particles. At present, the combination with chemical analysis (i.e., spectroscopy) overcome this limit together with recently introduced alternative approaches. For example, holographic imaging in microscope configuration images microplastics directly in unfiltered water, thus discriminating microplastics from diatoms and differentiates different sizes, shapes, and plastic types. The development of new analytical instruments coupled with each other or with conventional and innovative microscopy could solve the current problems in the identification of micro/nanoplastics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.