Markov state models of molecular kinetics (MSMs), in which the long-time statistical dynamics of a molecule is approximated by a Markov chain on a discrete partition of configuration space, have seen widespread use in recent years. This approach has many appealing characteristics compared to straightforward molecular dynamics simulation and analysis, including the potential to mitigate the sampling problem by extracting long-time kinetic information from short trajectories and the ability to straightforwardly calculate expectation values and statistical uncertainties of various stationary and dynamical molecular observables. In this paper, we summarize the current state of the art in generation and validation of MSMs and give some important new results. We describe an upper bound for the approximation error made by modeling molecular dynamics with a MSM and we show that this error can be made arbitrarily small with surprisingly little effort. In contrast to previous practice, it becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM can be much improved if non-metastable states are introduced near the transition states. Moreover, we show that it is not necessary to resolve all slow processes by the state space partitioning, but individual dynamical processes of interest can be resolved separately. We also present an efficient estimator for reversible transition matrices and a robust test to validate that a MSM reproduces the kinetics of the molecular dynamics data.
Markov state models (MSMs) have become the tool of choice to analyze large amounts of molecular dynamics data by approximating them as a Markov jump process between suitably predefined states. Here we investigate "Core Set MSMs," a new type of MSMs that build on metastable core sets acting as milestones for tracing the rare event kinetics. We present a thorough analysis of Core Set MSMs based on the existing milestoning framework, Bayesian estimation methods and Transition Path Theory (TPT). We show that Core Set MSMs can be used to extract phenomenological rate constants between the metastable sets of the system and to approximate the evolution of certain key observables. The performance of Core Set MSMs in comparison to standard MSMs is analyzed and illustrated on a toy example and in the context of the torsion angle dynamics of alanine dipeptide.
We consider a continuous-time Markov process on a large continuous or discrete state space. The process is assumed to have strong enough ergodicity properties and to exhibit a number of metastable sets. Markov state models (MSMs) are designed to represent the effective dynamics of such a process by a Markov chain that jumps between the metastable sets with the transition rates of the original process. MSMs have been used for a number of applications, including molecular dynamics, for more than a decade. Their approximation quality, however, has not yet been fully understood. In particular, it would be desirable to have a sharp error bound for the difference in propagation of probability densities between the MSM and the original process on long timescales. Here, we provide such a bound for a rather general class of Markov processes ranging from diffusions in energy landscapes to Markov jump processes on large discrete spaces. Furthermore, we discuss how this result provides formal support or shows the limitations of algorithmic strategies that have been found to be useful for the construction of MSMs. Our findings are illustrated by numerical experiments.
We consider a continuous-time, ergodic Markov process on a large continuous or discrete state space. The process is assumed to exhibit a number of metastable sets. Markov state models (MSMs) are designed to represent the effective dynamics of such a process by a Markov chain that jumps between the metastable sets with the transition rates of the original process. MSMs have been used for a number of applications, including molecular dynamics (cf. [F. Noé et al., Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 19011-19016]), for more than a decade. The rigorous and fully general (no zero temperature limit or comparable restrictions) analysis of their approximation quality, however, has only recently begun. Our first article on this topics [M. Sarich, F. Noé, and Ch. Schütte, Multiscale Model. Simul., 8 (2010), pp. 1154-1177] introduces an error bound for the difference in propagation of probability densities between the MSM and the original process on long timescales. Herein we provide upper bounds for the error in the eigenvalues between the MSM and the original process, which means that we analyze how well the longest timescales in the original process are approximated by the MSM. Our findings are illustrated by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.