We develop the worldline formalism for computations of composite operators such as the fluctuation induced energy-momentum tensor. As an example, we use a fluctuating real scalar field subject to Dirichlet boundary conditions. The resulting worldline representation can be evaluated by worldline Monte-Carlo methods in continuous spacetime. We benchmark this worldline numerical algorithm with the aid of analytically accessible single-plate and parallel-plate Casimir configurations, providing a detailed analysis of statistical and systematic errors. The method generalizes straightforwardly to arbitrary Casimir geometries and general background potentials.
We apply the worldline formalism and its numerical Monte-Carlo approach to computations of fluctuation induced energy-momentum tensors. For the case of a fluctuating Dirichlet scalar, we derive explicit worldline expressions for the components of the canonical energy-momentum tensor that are straightforwardly accessible to partly analytical and generally numerical evaluation. We present several simple proof-of-principle examples, demonstrating that efficient numerical evaluation is possible at low cost. Our methods can be applied to an investigation of positive-energy conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.