Quenching and tempering of precision forged components using their forging heat leads to reduced process energy and shortens the usual process chains. To design such a process, neither the isothermal transformation diagrams (TTT) nor the continuous cooling transformation (CCT) diagrams from literature can be used to predict microstructural transformations during quenching since the latter diagrams are significantly influenced by previous deformations and process-related high austenitising temperatures. For this reason, deformation CCT diagrams for several tempering steels from previous works have been investigated taking into consideration the process conditions of precision forging. Within the scope of the present work, these diagrams are used as input data for predicting microstructural transformations by means of artificial neural networks. Several artificial neural network structures have been examined using the commercial software MATLAB. Predictors have been established with satisfactory capabilities for predicting CCT diagrams for different degrees of deformation within the analyzed range of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.