We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both the time required and the precision of the estimator. Furthermore, we compare the precision of point counting for three different grid intensities with that of several standard leaf area measurement techniques. Results showed that the precision of the plant leaf area estimator based on point counting is high. Using a grid intensity of 1.76 cm(2)/point we estimated plant and canopy surface areas with accuracies similar to or better than those obtained using image analysis and a commercial leaf area meter. For canopy surface areas of approximately 1 m(2) (10 plants), the fractionator leaf approach with sampling fraction equal to 1/9 followed by point counting using a 4.3 cm(2)/point grid produced a coefficient of error of less than 7%. The smooth fractionator can be used to ensure that the additional contribution to the estimator variance due to between-plant variability is small.
Technology provides new tools for agriculture to be able to optimize fertilization. Optical instruments are becoming valid tools for farmers in making decisions about fertilization, even though they need to be calibrated for specific crops. Chlorophyll meters and multispectral radiometers have been tested on rice, corn, and wheat and afterwards on vegetables, in timing fertilization. Today, threshold lines that are able to detect crop N status in tomato crops are available. These thresholds, obtained in experiments carried out at Padova University, were validated in three open-field experiments. The first experiment was carried out in 2004 at the University experimental farm on tomato cv. Perfect Peel. The second and third experiments were conducted in a commercial farm at Codigoro (Ferrara) in 2004–2005. Tomato cultivars used were `UGX 822' and `Precocix' in 2004, in 2005 `Jet' was also used. In all trials, a “standard fertilization” management was compared with fertigation guided using SPAD and/or Cropscan. Optical tools were used to manage fertigation adopting both “threshold method” and “reference plot method”. In general “guided fertigation” resulted in less nitrogen application (N supply reduced between 18% and 45%), especially when “threshold method” was adopted. Yields were comparable to “standard fertilization” treatments, showing a better efficiency of “guided fertigation”. In some cases, guiding fertigation by means of optical instruments allowed higher fruit fresh weight, although dry matter content and °Brix were not influenced. Guided fertigation reduced also the number of damaged fruit and the percentage of nonmarketable product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.