To investigate the impact of strain and sex in the l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of Parkinson's disease, C57BL/6 and BALB/c mice were treated with either systemic MPTP-HCl (4 x 15 mg/kg) or saline and were examined in a number of behavioral tests. Furthermore, neostriatal and ventral striatal monoamine contents were determined, and the numbers of tyrosine hydroxylase-immunostained cells were counted in the substantia nigra and ventral tegmental area. Open-field testing showed that locomotor activity was drastically reduced as an acute effect of MPTP in both strains; however, subsequent recovery to control levels was faster in BALB/c mice than in C57BL/6. Nest building also indicated strain-dependent effects, since it was delayed only in C57BL/6 mice treated with MPTP. The other tests (grip test, pole test, rotarod, elevated plus-maze), although partly sensitive for over-all strain or gender differences, turned out not to be useful to compare MPTP effects in these two strains. Neurochemically, MPTP led to more severe neostriatal dopamine depletions in C57BL/6 (-85%) than in BALB/c mice (-58%). Histologically, a loss of tyrosine hydroxylase immunoreactivity (-25%) was observed only in the substantia nigra of C57BL/6 animals. Thus, our analysis consistently showed that the C57BL/6 mouse strain is more susceptible to MPTP than the BALB/c strain. Sex differences in MPTP sensitivity were not observed in our mice. The implications of these findings for the search for genes related to susceptibility to neurodegeneration are discussed.
The neurotoxin MPTP can damage dopamine systems in the brains of rodents, cats, or monkeys, and is therefore widely used to model degenerative processes that underlie human Parkinson's disease. Here, we investigated the relationships between behavioral and neurochemical effects of systemic MPTP treatment in C57Bl/6 and Balb/c mice. Initially, different doses of MPTP were used to determine which of them might be useful to establish severe striatal dopamine depletions. These data showed that four injections of 20mg/kg at two hour intervals, were more efficient than 10 or 15mg/kg per injection. However, this dose was not usable due to its severe lethality in females. In contrast, 4x 15mg/kg had a low risk of lethality and led to substantial dopamine depletions, which were more severe in the neostriatum than the ventral striatum, and more severe in C57 than in Balb mice. In the first open field test, which was performed two hours after the last injection, this treatment led to severe behavioral inactivation in all parameters taken (distance and speed of locomotion, peripheral activity, frequency and duration of rearing). This effect was seen in both strains and gender. Thereafter, recovery differed between strains, since Balb mice, which had sustained the smaller lesions, had completely recovered on the subsequent day, whereas similar recovery took longer in C57 mice. On the fourth day, all groups appeared largely normal; however, the measure of rearing behavior still showed a deficit in C57 mice. This deficit on day 4 was correlated with neostriatal dopamine depletion; that is, the larger the lesion, the less the number and duration of rearings. Interestingly, these relationships were also observed with respect to ventral striatal dopamine damage, which was correlated with the rearing deficit not only on day 4, but also on day 1. These data will be discussed with respect to mechanisms of toxicity, functional recovery, and the function of striatal dopamine systems.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is capable of producing a syndrome in mice which shares major characteristics with human Parkinson's disease. There is evidence for a genetic influence on the degree of damage exerted by MPTP, since different strains of mice can dramatically differ in their response to MPTP. We produced reciprocal F1 hybrids by crossbreeding the MPTP-susceptible C57BL/6 strain with resistant BALB/c. These hybrids were compared to the parental strains using neural and behavioral measures in order to characterize the genetic transmission of MPTP-susceptibility. The F1 generation as a whole had a lower depletion of neostriatal dopamine levels than even found in BALB/c. Furthermore, there was no significant loss of tyrosine hydroxylase-positive cells in the substantia nigra and quick recovery from deficits in motor behavior in F1, herein resembling BALB/c. We suggest that several loci are involved in susceptibility to MPTP, and that the trait is under control of recessive susceptibility and/or dominant resistance alleles, which interact in F1, leading to extremely low susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.