Wrist-worn activity trackers have experienced a tremendous growth lately and studies on the accuracy of mainstream trackers used by older adults are needed. This study explores the performance of six trackers (Fitbit Charge2, Garmin VivoSmart HR+, Philips Health Watch, Withings Pulse Ox, ActiGraph GT9X-BT, Omron HJ-72OITC) for estimating: steps, travelled distance, and heart-rate measurements for a cohort of older adults. Eighteen older adults completed a structured protocol involving walking tasks, simulated household activities, and sedentary activities. Less standardized activities were also included, such as: dusting, using a walking aid, or playing cards, in order to simulate real-life scenarios. Wrist-mounted and chest/waist-mounted devices were used. Gold-standards included treadmill, ECG-based chest strap, direct observation or video recording according to the activity and parameter. Every tracker showed a decreasing accuracy with slower walking speed, which resulted in a significant step under-counting. A large mean absolute percentage error (MAPE) was found for every monitor at slower walking speeds with the lowest reported MAPE at 2 km/h being 7.78%, increasing to 20.88% at 1.5 km/h, and 44.53% at 1 km/h. During household activities, the MAPE climbing up/down-stairs ranged from 8.38–19.3% and 10.06–19.01% (dominant and non-dominant arm), respectively. Waist-worn devices showed a more uniform performance. However, unstructured activities (e.g. dusting, playing cards), and using a walking aid represent a challenge for all wrist-worn trackers as evidenced by large MAPE (> 57.66% for dusting, > 67.32% when using a walking aid). Poor performance in travelled distance estimation was also evident during walking at low speeds and climbing up/down-stairs (MAPE > 71.44% and > 48.3%, respectively). Regarding heart-rate measurement, there was no significant difference (p-values > 0.05) in accuracy between trackers placed on the dominant or non-dominant arm. Concordant with existing literature, while the mean error was limited (between -3.57 bpm and 4.21 bpm), a single heart-rate measurement could be underestimated up to 30 beats-per-minute. This study showed a number of limitations of consumer-level wrist-based activity trackers for older adults. Therefore caution is required when used, in healthcare or in research settings, to measure activity in older adults.
Background Few studies have investigated the validity of mainstream wrist-based activity trackers in healthy older adults in real life, as opposed to laboratory settings. Objective This study explored the performance of two wrist-worn trackers (Fitbit Charge 2 and Garmin vivosmart HR+) in estimating steps, energy expenditure, moderate-to-vigorous physical activity (MVPA) levels, and sleep parameters (total sleep time [TST] and wake after sleep onset [WASO]) against gold-standard technologies in a cohort of healthy older adults in a free-living environment. Methods Overall, 20 participants (>65 years) took part in the study. The devices were worn by the participants for 24 hours, and the results were compared against validated technology (ActiGraph and New-Lifestyles NL-2000i). Mean error, mean percentage error (MPE), mean absolute percentage error (MAPE), intraclass correlation (ICC), and Bland-Altman plots were computed for all the parameters considered. Results For step counting, all trackers were highly correlated with one another (ICCs>0.89). Although the Fitbit tended to overcount steps (MPE=12.36%), the Garmin and ActiGraph undercounted (MPE 9.36% and 11.53%, respectively). The Garmin had poor ICC values when energy expenditure was compared against the criterion. The Fitbit had moderate-to-good ICCs in comparison to the other activity trackers, and showed the best results (MAPE=12.25%), although it underestimated calories burned. For MVPA levels estimation, the wristband trackers were highly correlated (ICC=0.96); however, they were moderately correlated against the criterion and they overestimated MVPA activity minutes. For the sleep parameters, the ICCs were poor for all cases, except when comparing the Fitbit with the criterion, which showed moderate agreement. The TST was slightly overestimated with the Fitbit, although it provided good results with an average MAPE equal to 10.13%. Conversely, WASO estimation was poorer and was overestimated by the Fitbit but underestimated by the Garmin. Again, the Fitbit was the most accurate, with an average MAPE of 49.7%. Conclusions The tested well-known devices could be adopted to estimate steps, energy expenditure, and sleep duration with an acceptable level of accuracy in the population of interest, although clinicians should be cautious in considering other parameters for clinical and research purposes.
Parkinson’s disease (PD) is a progressive neurological disorder of the central nervous system that deteriorates motor functions, while it is also accompanied by a large diversity of non-motor symptoms such as cognitive impairment and mood changes, hallucinations, and sleep disturbance. Parkinsonism is evaluated during clinical examinations and appropriate medical treatments are directed towards alleviating symptoms. Tri-axial accelerometers, gyroscopes, and magnetometers could be adopted to support clinicians in the decision-making process by objectively quantifying the patient’s condition. In this context, at-home data collections aim to capture motor function during daily living and unobstructedly assess the patients’ status and the disease’s symptoms for prolonged time periods. This review aims to collate existing literature on PD monitoring using inertial sensors while it focuses on papers with at least one free-living data capture unsupervised either directly or via videotapes. Twenty-four papers were selected at the end of the process: fourteen investigated gait impairments, eight of which focused on walking, three on turning, two on falls, and one on physical activity; ten articles on the other hand examined symptoms, including bradykinesia, tremor, dyskinesia, and motor state fluctuations in the on/off phenomenon. In summary, inertial sensors are capable of gathering data over a long period of time and have the potential to facilitate the monitoring of people with Parkinson’s, providing relevant information about their motor status. Concerning gait impairments, kinematic parameters (such as duration of gait cycle, step length, and velocity) were typically used to discern PD from healthy subjects, whereas for symptoms’ assessment, researchers were capable of achieving accuracies of over 90% in a free-living environment. Further investigations should be focused on the development of ad-hoc hardware and software capable of providing real-time feedback to clinicians and patients. In addition, features such as the wearability of the system and user comfort, set-up process, and instructions for use, need to be strongly considered in the development of wearable sensors for PD monitoring.
Background Older adults may use wearable devices for various reasons, ranging from monitoring clinically relevant health metrics or detecting falls to monitoring physical activity. Little is known about how this population engages with wearable devices, and no qualitative synthesis exists to describe their shared experiences with long-term use. Objective This study aims to synthesize qualitative studies of user experience after a multi-day trial with a wearable device to understand user experience and the factors that contribute to the acceptance and use of wearable devices. Methods We conducted a systematic search in CINAHL, APA PsycINFO, PubMed, and Embase (2015-2020; English) with fixed search terms relating to older adults and wearable devices. A meta-synthesis methodology was used. We extracted themes from primary studies, identified key concepts, and applied reciprocal and refutational translation techniques; findings were synthesized into third-order interpretations, and finally, a “line-of-argument” was developed. Our overall goal was theory development, higher-level abstraction, and generalizability for making this group of qualitative findings more accessible. Results In total, we reviewed 20 papers; 2 evaluated fall detection devices, 1 tested an ankle-worn step counter, and the remaining 17 tested activity trackers. The duration of wearing ranged from 3 days to 24 months. The views of 349 participants (age: range 51-94 years) were synthesized. Four key concepts were identified and outlined: motivation for device use, user characteristics (openness to engage and functional ability), integration into daily life, and device features. Motivation for device use is intrinsic and extrinsic, encompassing many aspects of the user experience, and appears to be as, if not more, important than the actual device features. To overcome usability barriers, an older adult must be motivated by the useful purpose of the device. A device that serves its intended purpose adds value to the user’s life. The user’s needs and the support structure around the device—aspects that are often overlooked—seem to play a crucial role in long-term adoption. Our “line-of-argument” model describes how motivation, ease of use, and device purpose determine whether a device is perceived to add value to the user’s life, which subsequently predicts whether the device will be integrated into the user’s life. Conclusions The added value of a wearable device is the resulting balance of motivators (or lack thereof), device features (and their accuracy), ease of use, device purpose, and user experience. The added value contributes to the successful integration of the device into the daily life of the user. Useful device features alone do not lead to continued use. A support structure should be placed around the user to foster motivation, encourage peer engagement, and adapt to the user’s preferences.
Anterior cruciate ligament (ACL) injuries are common among athletes. Despite a successful return to sport (RTS) for most of the injured athletes, a significant proportion do not return to competitive levels, and thus RTS post ACL reconstruction still represents a challenge for clinicians. Wearable sensors, owing to their small size and low cost, can represent an opportunity for the management of athletes on-the-field after RTS by providing guidance to associated clinicians. In particular, this study aims to investigate the ability of a set of inertial sensors worn on the lower-limbs by rugby players involved in a change-of-direction (COD) activity to differentiate between healthy and post-ACL groups via the use of machine learning. Twelve male participants (six healthy and six post-ACL athletes who were deemed to have successfully returned to competitive rugby and tested in the 5–10 year period following the injury) were recruited for the study. Time- and frequency-domain features were extracted from the raw inertial data collected. Several machine learning models were tested, such as k-nearest neighbors, naïve Bayes, support vector machine, gradient boosting tree, multi-layer perceptron, and stacking. Feature selection was implemented in the learning model, and leave-one-subject-out cross-validation (LOSO-CV) was adopted to estimate training and test errors. Results obtained show that it is possible to correctly discriminate between healthy and post-ACL injury subjects with an accuracy of 73.07% (multi-layer perceptron) and sensitivity of 81.8% (gradient boosting). The results of this study demonstrate the feasibility of using body-worn motion sensors and machine learning approaches for the identification of post-ACL gait patterns in athletes performing sport tasks on-the-field even a number of years after the injury occurred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.