Background and Purposeβ2/3‐subunit‐selective modulation of GABAA receptors by valerenic acid (VA) is determined by the presence of transmembrane residue β2/3N265. Currently, it is not known whether β2/3N265 is part of VA's binding pocket or is involved in the transduction pathway of VA's action. The aim of this study was to clarify the localization of VA's binding pocket on GABAA receptors.Experimental ApproachDocking and a structure‐based three‐dimensional pharmacophore were employed to identify candidate amino acid residues that are likely to interact with VA. Selected amino acid residues were mutated, and VA‐induced modulation of the resulting GABAA receptors expressed in Xenopus oocytes was analysed.Key ResultsA binding pocket for VA at the β+/α− interface encompassing amino acid β3N265 was predicted. Mutational analysis of suggested amino acid residues revealed a complete loss of VA's activity on β3M286W channels as well as significantly decreased efficacy and potency of VA on β3N265S and β3F289S receptors. In addition, reduced efficacy of VA‐induced I
GABA enhancement was also observed for α1M235W, β3R269A and β3M286A constructs.Conclusions and ImplicationsOur data suggest that amino acid residues β3N265, β3F289, β3M286, β3R269 in the β3 subunit, at or near the etomidate/propofol binding site(s), form part of a VA binding pocket. The identification of the binding pocket for VA is essential for elucidating its pharmacological effects and might also help to develop new selective GABAA receptor ligands.
similar chemistry. The combined findings indicate that these abietane-diterpenoid natural product analogues offer a source of novel bioactive molecules with promising pharmacological and drug-likeness properties. ASSOCIATED CONTENT Supporting Information Available: Complete experimental details for the synthesis of compounds 7 and 9-16, including copies of 1 H NMR and 13 C NMR spectra, and for all the biological assays. A list with the complete results of the docking studies carried out on the analyzed targets and SMILES codes is also available in the S.I.
The semisynthesis and biological activity of the naturally occurring abietane diterpenoids callitrisic acid (4a; 4-epidehydroabietic acid) and callitrisinol (6) are reported. These compounds and jiadifenoic acid C (5) were obtained from methyl callitrisate (4b) isolated from Sandarac resin for biological evaluation and comparison with the biological activities of C4 epimers such as dehydroabietic acid (2a). In particular, the antiproliferative activity against a panel of six representative human solid tumor cell lines (A549, HBL-100, HeLa, SW1573, T-47D, WiDr) and the effect on GABAA receptors (α
1
β
2
γ
2s) were evaluated. The GI50 values were in the range of 3.4–61 µM and the potentiation of IGABA was 269–311% at 100 µM. Callitrisinol (6) was found to be 6.7-fold more potent than the reference etoposide in the WiDr (colon) cancer cell line. The role of the stereogenic center at C4 for antiproliferative and GABAA receptor modulating activities in the dehydroabietane scaffold has thus been revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.