In this paper, we address the problem of optimal estimating the position of each agent in a network from relative noisy vectorial distances with its neighbors by means of only local communication and bounded complexity, independent of network size and topology. We propose a consensus-based algorithm with the use of local memory variables which allows asynchronous implementation, has guaranteed exponential convergence to the optimal solution under simple deterministic and randomized communication protocols, and requires minimal packet transmission. In the randomized scenario, we then study the rate of convergence in expectation of the estimation error and we argue that it can be used to obtain upper and lower bound for the rate of converge in mean square. In particular, we show that for regular graphs, such as Cayley, Ramanujan, and complete graphs, the convergence rate in expectation has the same asymptotic degradation of memoryless asynchronous consensus algorithms in terms of network size. In addition, we show that the asynchronous implementation is also robust to delays and communication failures. We finally complement the analytical results with some numerical simulations, comparing the proposed strategy with other algorithms which have been recently proposed in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.