IMPORTANCEMutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases β-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD.OBJECTIVE To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations.INTERVENTIONS An escalating dose of oral ambroxol to 1.26 g per day.
ObjectivesGBA1 mutations are a frequent risk factor for Parkinson disease (PD). The aim of this study is to evaluate clinical features in a group of GBA1 mutation–positive individuals over a 6-year follow-up.MethodsThis is a longitudinal study on a cohort of GBA1-positive carriers. We enrolled 31 patients with Gaucher disease type 1 (GD), 29 GBA1 heterozygous carriers (Het GBA group) and 30 controls (HC) at baseline and followed them for 6 years. We assessed baseline motor and non-motor signs of PD in all subjects using clinical questionnaires and scales (reduced Unified Multiple System Atrophy Rating Scale (UMSARS), Montreal Cognitive assessment (MoCA), University of Pennsylvania Smell Identification Test (UPSIT), REM Sleep Behavior Disorder screening questionnaire (RBDsq), Movement Disorders Society Unified Parkinson’s Disease Rating Scale motor subscale (MDS-UPDRS III) and Beck Depression Inventory (BDI). We repeated these at the 6-year follow-up alongside venous blood sampling for measurement of glucocerebrosidase enzymatic activity (GCase). We explored whether the GCase activity level was altered in leucocytes of these subjects and how it was related to development of PD.ResultsWe observed a significant worsening in UMSARS, RBDsq, MDS-UPDRS III and BDI scores at the 6-year follow-up compared with baseline in both the GD and Het GBA groups. Intergroup comparisons showed that GD subjects had significantly worse scores in UPSIT, UMSARS, MoCA and MDS-UPDRS III than HC, while Het GBA displayed worse outcomes in UPSIT and MDS-UPDRS III compared with HC. In GBA1 mutation–positive individuals (Het GBA and GD), an UPSIT score of 23 at baseline was correlated with worse outcome at 6 years in UPSIT, MoCA, MDS-UPDRS III and BDI.ConclusionIn this 6-year-long longitudinal study, GBA1 mutation–positive subjects showed a worsening in motor and non-motor prodromal PD features.
Background Mutations in GBA cause Gaucher disease when biallelic and are strong risk factors for Parkinson's disease when heterozygous. GBA analysis is complicated by the nearby pseudogene. We aimed to design and validate a method for sequencing GBA using long reads. Methods We sequenced GBA on the Oxford Nanopore MinION as an 8.9 kb amplicon from 102 individuals, including patients with Parkinson's and Gaucher diseases. We used NanoOK for quality metrics, NGMLR to align data (after comparing with GraphMap), Nanopolish and Sniffles to call variants, and WhatsHap for phasing. Results We detected all known missense mutations in these samples, including the common p.N409S (N370S) and p.L483P (L444P) in multiple samples, and nine rarer ones, as well as a splicing and a truncating mutation, and intronic SNPs. We demonstrated the ability to phase mutations, confirm compound heterozygosity, and assign haplotypes. We also detected two known risk variants in some Parkinson's patients. Rare false positives were easily identified and filtered, with the Nanopolish quality score adjusted for the number of reads a very robust discriminator. In two individuals carrying a recombinant allele, we were able to detect and fully define it in one carrier, where it included a 55‐base pair deletion, but not in another one, suggesting a limitation of the PCR enrichment method. Missense mutations were detected at the correct zygosity, except for the case where the RecNciI one was missed. Conclusion The Oxford Nanopore MinION can detect missense mutations and an exonic deletion in this difficult gene, with the added advantages of phasing and intronic analysis. It can be used as an efficient research tool, but additional work is required to exclude all recombinants.
Objective Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in‐depth analysis of the SNCA locus to identify RBD‐specific risk variants. Methods Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta‐analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan–Meier survival analysis. Results A 5′‐region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E‐08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5′ risk variants across the different synucleinopathies. An independent iRBD‐specific suggestive association (rs11732740) was detected at the 3′ of SNCA (OR = 1.32, p = 4.7E‐04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD‐specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E‐06). The known top PD‐associated variant (3′ variant rs356182) had an opposite direction of effect in iRBD compared to PD. Interpretation There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3′ of SNCA. Several 5′ SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020;87:584–598
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.