Mobile and long-term recording of biomedical signals such as ECG, EMG and EEG can improve diagnosis and monitor the evolution of several widespread diseases. However, it requires specific solutions, such as wearable devices that should be particularly comfortable for patients, while at the same time ensuring medical-grade signal acquisition quality, including Power Line Interference (PLI) removal. This work focuses on the on-board real-time PLI filtering on a low-power bio-potential acquisition wearable system. The paper analyzes in depth basic and advanced PLI filtering techniques and evaluates them in a wearable real-time processing scenario, assessing performance on EMG and ECG signals. Our experiments prove that most PLI removal algorithms are not usable in this challenging context, because they lack robustness or they require off-line processing and large amounts of available data. On the other hand, adaptive filtering techniques are robust and well-suited for lightweight on-line processing. We substantiate this finding with off-line analysis and comparison, as well as with a complete embedded implementation on our low-power low-cost wearable device.
Wearable devices for monitoring vital signs such as heart-rate, respiratory rate and blood pressure are demonstrating to have an increasing role in improving quality of life and in allowing prevention for chronic cardiac diseases. However, the design of a wearable system without reference to ground potential requires multi-level strategies to remove noise caused from power lines. This paper describes a bio-potential acquisition embedded system designed with an innovative analog front-end, showing the performance in EEG and ECG applications and the comparison between different noise reduction algorithms. We demonstrate that the proposed system is able to acquire bio-potentials with a signal quality equivalent to state-of-the-art bench-top biomedical devices and can be therefore used for monitoring purpose, with the advantages of a low-cost low-power wearable devices.
Wearable systems capable to capture vital signs allow the development of advanced medical applications. One notable example is the use of surface electromyography (EMG) to gather muscle activation potentials, in principle an easy input for prosthesis control. However, the acquisition of such signals is affected by high variability and ground loop problems. Moreover, the input impedance influenced in time by motion and perspiration determines an offset, which can be orders of magnitude higher than the signal of interest. We propose a wearable device equipped with a digitally controlled Analog Front End (AFE) for biopotentials acquisition with zero-offset. The proposed AFE solution has an internal Digital to Analog Converter (DAC) used to adjust independently the reference of each channel removing any DC offset. The analog integrated circuit is coupled with a microcontroller, which periodically estimates the offset and implements a closed loop feedback on the analog part. The proposed approach was tested on EMG signals acquired from 4 subjects while performing different activities and shows that the system correctly acquires signals with no DC offset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.