We study here a Fokker-Planck equation with variable coefficient of diffusion and boundary conditions which appears in the study of the wealth distribution in a multi-agent society [2, 10, 22]. In particular, we analyze the large-time behavior of the solution, by showing that convergence to the steady state can be obtained in various norms at different rates.
In this paper we propose and study a new kinetic rating model for a large number of players, which is motivated by the well-known Elo rating system. Each player is characterised by an intrinsic strength and a rating, which are both updated after each game. We state and analyse the respective Boltzmann type equation and derive the corresponding nonlinear, nonlocal Fokker-Planck equation. We investigate the existence of solutions to the Fokker-Planck equation and discuss their behaviour in the long time limit. Furthermore, we illustrate the dynamics of the Boltzmann and Fokker-Planck equation with various numerical experiments.
We consider here a Fokker-Planck equation with variable coefficient of diffusion which appears in the modeling of the wealth distribution in a multi-agent society. At difference with previous studies, to describe a society in which agents can have debts, we allow the wealth variable to be negative. It is shown that, even starting with debts, if the initial mean wealth is assumed positive, the solution of the Fokker-Planck equation is such that debts are absorbed in time, and a unique equilibrium density located in the positive part of the real axis will be reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.