Core samples from two deep boreholes were analyzed for petrographic, stable and Sr isotopes, fluid inclusion microthermometry and major, minor, trace and rare-earth elements (REE) of different types of dolomite in the Silurian and Devonian carbonates of the eastern side of the Michigan Basin provided useful insights into the nature of dolomitization, and the evolution of diagenetic pore fluids in this part of the basin. Petrographic features show that both age groups are characterized by the presence of a pervasive replacive fine-crystalline (<50 µm) dolomite matrix (RD1) and pervasive and selective replacive medium crystalline (>50–100 µm) dolomite matrix (RD2 and RD3, respectively). In addition to these types, a coarse crystalline (>500 µm) saddle dolomite cement (SD) filling fractures and vugs is observed only in the Silurian rocks. Results from geochemical and fluid inclusion analyses indicate that the diagenesis of Silurian and Devonian formations show variations in terms of the evolution of the diagenetic fluid composition. These fluid systems are: (1) a diagenetic fluid system that affected Silurian carbonates and was altered by salt dissolution post-Silurian time. These carbonates show a negative shift in δ18O values (dolomite δ18O average: −6.72‰ VPDB), Sr isotopic composition slightly more radiogenic than coeval seawater (0.7078–0.7087), high temperatures (RD2 and SD dolomite Th average: 110 °C) and hypersaline signature (RD2 and SD dolomite average salinity: 26.8 wt.% NaCl eq.); and (2) a diagenetic fluid system that affected Devonian carbonates, possibly occurred during the Alleghenian orogeny in Carboniferous time and characterized by a less pronounced negative shift in δ18O values (dolomite δ18O average: −5.74‰ VPDB), Sr isotopic composition in range with the postulated values for coeval seawater (0.7078–0.7080), lower temperatures (RD2 dolomite Th average: 83 °C) and less saline signature (RD2 dolomite average salinity: 20.8 wt.% NaCl eq.).
Integrated petrographic, isotopic, fluid inclusion microthermometry, and geochemical analyses of Paleozoic carbonate successions from multiple boreholes within the Huron Domain, southern Ontario were conducted to characterize the diagenetic history and fluid composition, on a regional scale, and evaluate the nature and origin of dolomitized beds. Multiple generations of non-stochiometric dolomite have been observed. These dolomites occur as both replacement (D1 and D2) and cement (saddle dolomite; SD) and formed either at near-surface to shallow burial zone (D1) or intermediate burial (D2 and SD). Petrographic and geochemical data of dolomite types and calcite cement suggest that these carbonates have experienced multiple fluid events that affected dolomite formation and other diagenetic processes. Cambrian and Ordovician strata have two possibly isolated diagenetic fluid systems; an earlier fluid system that is characterized by a pronounced negative shift in oxygen and carbon isotopic composition, more radiogenic Sr ratios, warm and saline signatures, higher average ∑REE compared to warm water marine brachiopods, negative La anomaly, and positive Ce anomaly; and a later Ordovician system, characterized by less negative shifts in oxygen and carbon isotopes, comparable Th, hypersaline, a less radiogenic, less negative La anomaly, and primarily positive Ce anomaly but also higher average ∑REE compared to warm water marine brachiopods. Ordovician, Silurian, and Devonian Sr isotopic ratios, however, show seawater composition of their respective age as the primary source of diagenetic fluids with minor rock/water interactions. In contrast, the isotopic data of the overlying Silurian and Devonian carbonates show overlaps between δ13C and δ18O values. However, δ18O values show evidence of dolomite recrystallization. D2 shows wide Th values and medium to high salinity values. Higher Th and salinity are observed in SD in the Silurian carbonates, which suggest the involvement of localized fluxes of hydrothermal fluids during its formation during Paleozoic orogenesis. Geochemical proxies suggest that in both age groups the diagenetic fluids were originally of coeval seawater composition, subsequently modified via water-rock interaction possibly related to brines, which were modified by the dissolution of Silurian evaporites from the Salina series. The integration of the obtained data in the present study demonstrates the linkage between fluid flux history, fluid compartmentalization, and related diagenesis during the regional tectonic evolution of the Michigan Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.