We have measured the radiation tolerance of poly-crystalline and single-crystalline diamonds grown by the chemical vapor deposition (CVD) process by measuring the charge collected before and after irradiation in a 50 m pitch strip detector fabricated on each diamond sample. We irradiated one group of sensors with 800 MeV protons, and a second group of sensors with 24 GeV protons, in steps, to protons cm−2 and protons cm−2 respectively. We observe the sum of mean drift paths for electrons and holes for both poly-crystalline CVD diamond and single-crystalline CVD diamond decreases with irradiation fluence from its initial value according to a simple damage curve characterized by a damage constant for each irradiation energy and the irradiation fluence. We find for each irradiation energy the damage constant, for poly-crystalline CVD diamond to be the same within statistical errors as the damage constant for single-crystalline CVD diamond. We find the damage constant for diamond irradiated with 24 GeV protons to be and the damage constant for diamond irradiated with 800 MeV protons to be . Moreover, we observe the pulse height decreases with fluence for poly-crystalline CVD material and within statistical errors does not change with fluence for single-crystalline CVD material for both 24 GeV proton irradiation and 800 MeV proton irradiation. Finally, we have measured the uniformity of each sample as a function of fluence and observed that for poly-crystalline CVD diamond the samples become more uniform with fluence while for single-crystalline CVD diamond the uniformity does not change with fluence.
We report on a combined experimental and modelling approach towards the design and fabrication of efficient bulk shields for low-frequency magnetic fields. To this aim, MgB2 is a promising material when its growing technique allows the fabrication of suitably shaped products and a realistic numerical modelling can be exploited to guide the shield design. Here, we report the shielding properties of an MgB2 tube grown by a novel technique that produces fully machinable bulks, which can match specific shape requirements. Despite a height/radius aspect ratio of only 1.75, shielding factors higher than 175 and 55 were measured at temperature T = 20 K and in axially-applied magnetic fields μ0Happl = 0.1 and 1.0 T, respectively, by means of cryogenic Hall probes placed on the tube’s axis. The magnetic behaviour of the superconductor was then modelled as follows: first we used a two-step procedure to reconstruct the macroscopic critical current density dependence on magnetic field, Jc(B), at different temperatures from the local magnetic induction cycles measured by the Hall probes. Next, using these Jc(B) characteristics, by means of finite-element calculations we reproduced the experimental cycles remarkably well at all the investigated temperatures and positions along the tube’s axis. Finally, this validated model was exploited to study the influence both of the tube’s wall thickness and of a cap addition on the shield performance. In the latter case, assuming the working temperature of 25 K, shielding factors of 105 and 104 are predicted in axial applied fields μ0Happl = 0.1 and 1.0 T, respectively.
We have studied Bi-2212 microcrystals aged at ambient conditions for 40 days. Combined x-ray absorption near edge structure and x-ray fluorescence measurements with micrometer space resolution show both an increase of Cu+ with respect to Cu2+ and an enrichment in Cu vs Bi and Sr cation content near the sample edges in the b-axis direction. A parallel study on an electrically contacted sample has indirectly detected the O loss, observing both a resistivity increase and an increase in sample thickness near the edges. We conclude that the O outdiffusion along the b axis is accompanied by Cu cation migration in the same direction.
Superconductors are key materials for shielding quasi-static magnetic fields. In this work, we investigated the shielding properties of an MgB 2 cup-shaped shield with small aspect-ratio of height/outer radius. Shape and aspect-ratio were chosen in order to address practical requirements of both high shielding factors (SFs) and space-saving solutions. To obtain large critical current densities (J c ), which are crucial for achieving high magnetic-mitigation performance, a highpurity starting MgB 2 powder was selected. Then, processing of the starting MgB 2 powder into high density bulks was performed by spark plasma sintering. The as-obtained material is fully machinable and was shaped into a cup-shield. Assessment of the material by scaling of the pinning force showed a non-trivial pinning behaviour. The MgB 2 powder selection was decisive in enlarging the range of external fields where efficient shielding occurs. The shield's properties were measured in both axial-and transverse-field configurations using Hall probes. Despite a height/outer radius aspect ratio of 2.2, shielding factors higher than 10 4 at T=20 K up to a threshold field of 1.8 T were measured in axial-field geometry at a distance of 1 mm from the closed extremity of the cup, while SFs>10 2 occurred in the inner half of the cup. As expected, this threshold field decreased with increased temperature, but SFs still exceeding the above mentioned values were found up to 0.35 T at 35 K. The shield's shape limits the SF values achievable in transverse-field configuration. Nevertheless, the in-field J c of the sample supported SFs over 40 at T=20 K up to a field of 0.8 T, 1 mm away from the cup closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.