Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± SD), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.
The research Ethics committee of the Faculty of Pedagogy and Psychology (ELTE) granted a central permission (permission nr: 2019/47). Many other labs obtained IRB approval too, which approvals can be found here: https://osf.io/j6kte/ . Participants had to give informed consent before starting the experiment. Only participants recruited through Mturk or Prolific received monetary compensation.Note that full information on the approval of the study protocol must also be provided in the manuscript.
How do valenced odors affect the perception and evaluation of facial expressions? We reviewed 25 studies published from 1989 to 2020 on cross-modal behavioral effects of odors on the perception of faces. The results indicate that odors may influence facial evaluations and classifications in several ways. Faces are rated as more arousing during simultaneous odor exposure, and the rated valence of faces is affected in the direction of the odor valence. For facial classification tasks, in general, valenced odors, whether pleasant or unpleasant, decrease facial emotion classification speed. The evidence for valence congruency effects was inconsistent. Some studies found that exposure to a valenced odor facilitates the processing of a similarly valenced facial expression. The results for facial evaluation were mirrored in classical conditioning studies, as faces conditioned with valenced odors were rated in the direction of the odor valence. However, the evidence of odor effects was inconsistent when the task was to classify faces. Furthermore, using a z-curve analysis, we found clear evidence for publication bias. Our recommendations for future research include greater consideration of individual differences in sensation and cognition, individual differences (e.g., differences in odor sensitivity related to age, gender, or culture), establishing standardized experimental assessments and stimuli, larger study samples, and embracing open research practices.
We argue that depending on p-values to reject null hypotheses, including a recent call for changing the canonical alpha level for statistical significance from .05 to .005, is deleterious for the finding of new discoveries and the progress of science. Given that blanket and variable criterion levels both are problematic, it is sensible to dispense with significance testing altogether. There are alternatives that address study design and determining sample sizes much more directly than significance testing does; but none of the statistical tools should replace significance testing as the new magic method giving clear-cut mechanical answers. Inference should not be based on single studies at all, but on cumulative evidence from multiple independent studies. When evaluating the strength of the evidence, we should consider, for example, auxiliary assumptions, the strength of the experimental design, or implications for applications. To boil all this down to a binary decision based on a p-value threshold of .05, .01, .005, or anything else, is not acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.