Cyclooxygenase (COX), also known as prostaglandin endoperoxide synthase, is the key enzyme required for the conversion of arachidonic acid to prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2. In many situations, the COX-1 enzyme is produced constitutively (e.g., in gastric mucosa), whereas COX-2 is highly inducible (e.g., at sites of inflammation and cancer). Traditional nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit both enzymes, and a new class of COX-2 selective inhibitors (COXIBs) preferentially inhibit the COX-2 enzyme. This review summarizes our current understanding of the role of COX-1 and COX-2 in normal physiology and disease.
Objective To use a quantitative approach to evaluate the literature for quantity, quality, and consistency of studies of maternal and infant characteristics in association with breastfeeding initiation and continuation, and to conduct a meta-analysis to produce summary relative risks (RRs) for selected factors.Study design A systematic review using PubMed and CINAHL through March 2016 was conducted to identify relevant observational studies in developed nations, reporting a measure of risk for 1 or more of 6 quantitatively derived, high impact factors in relation to either breastfeeding initiation or continuation. One author abstracted data using a predesigned database, which was reviewed by a second independent author; data evaluation and interpretation included all co-authors. These factors were summarized using standard metaanalysis techniques. ResultsSix high impact factors were identified (smoking [39 papers], mode of delivery [47 papers], parity [31 papers], dyad separation [17 papers], maternal education [62 papers], and maternal breastfeeding education [32 papers]). Summary RR from random-effects models for breastfeeding initiation were highest for high vs low maternal education (RR 2.28 [95% CI 1.92-2.70]), dyad connection vs not (RR 2.01 [95% CI 1.38-2.92]), and maternal nonsmoking vs smoking (RR = 1.76 [95% CI 1.59-1.95]); results were similar for breastfeeding continuation.Conclusions Despite methodological heterogeneity across studies, relatively consistent results were observed for these perinatally identifiable factors associated with breastfeeding initiation and continuation, which may be informative in developing targeted interventions to provide education and support for successful breastfeeding in more families. (J Pediatr 2018;203:190-6). P-h P value for heterogeneity RR Relative risk SES Socioeconomic status WIC Women, infants, and children From the
The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.
Stress in the form of moderate periods of maternal separation of newborn rats has been postulated to cause permanent changes in the central nervous system and diseases in later life. It is also considered that dietary supplementation with long chain polyunsaturated fatty acids (LC-PUFAs) can potentially ameliorate the effects of stress. The metabolic consequences of early life maternal separation stress were investigated in rats (2-14 days after birth), either alone or in combination with secondary acute water avoidance stress at 3-4 months of age. The effect of a LC-PUFA-enriched dietary intervention in stressed animals was also assessed. Systematic changes in metabolic biochemistry were evaluated using 1H nuclear magnetic resonance spectroscopy of blood plasma and multivariate pattern recognition techniques. The biochemical response to stress was characterized by decreased levels of total lipoproteins and increased levels of amino acids, glucose, lactate, creatine, and citrate. Secondary acute water avoidance stress also caused elevated levels of O-acetyl glycoproteins in blood plasma. LC-PUFAs dietary enrichment did not alter the metabolic response to stress, but did result in a modified lipoprotein profile. This work indicates that the different stressor types resulted in some common systemic metabolic responses that involve changes in energy and muscle metabolism, but that they are not reversible by dietary intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.