We demonstrate the direct generation of sub-two-cycle pulses by soliton self-compression of femtosecond pulses from a Ti:sapphire laser at 85 MHz using a 4.85-mm-long highly nonlinear photonic crystal fiber. Sub-nanojoule, 41 fs input pulses were compressed down to 4.6 fs without additional phase compensation schemes. To our knowledge, these are the shortest pulses obtained by soliton-effect compression of a laser oscillator. Efficient, near-dispersionless collimation of the fiber output was achieved with a simple lens and an octave-spanning double-chirped mirror pair. The full electric field of the compressed pulses was retrieved with a genetic algorithm applied to spectral and interferometric autocorrelation measurements, and the results are well described by numerical simulations.
The possibility of soliton self-compression of ultrashort laser pulses down to the few-cycle regime in photonic crystal fibers is numerically investigated. We show that efficient sub-two-cycle temporal compression of nanojoule-level 800 nm pulses can be achieved by employing short (typically 5-mmlong) commercially available photonic crystal fibers and pulse durations of around 100 fs, regardless of initial linear chirp, and without the need of additional dispersion compensation techniques. We envisage applications in a new generation of compact and efficient sub-two cycle laser pulse sources. * Electronic address: marco.tognetti@fc.up.pt
We present the coherent control of the temporal shape of laser pulses obtained by exploiting the propagation dynamics of electromagnetically induced transparency. Temporal compression, as a special case of pulse tailoring, is discussed. We envisage applications in nonlinear optics processes and control of pulse shapes in the vacuum ultraviolet spectral region
We present a theoretical and experimental study on the possibility of spectral manipulation of weak probe-laser pulses in the presence of dynamical electromagnetically induced transparency. We predict a spectral enlargement or narrowing process depending on whether the probe-laser pulse is overlapped by the rising or the falling edge of the coupling pulse, respectively. The results of an experiment in sodium atomic vapors confirm the theoretical predictions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.