The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies.
Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar to fuel energy conversion efficiencies are obtained with earth abundant materials. This review article discusses recent developments and discoveries in the mechanisms by which the localized surface plasmon resonance (LSPR) in metallic nanoparticles can increase or complement a neighbouring semiconductor in light absorption for catalytic water splitting applications. These mechanisms can mitigate the intrinsic optical limitations of semiconductors (e.g., metal oxides) for efficient solar water splitting. We identify four types of enhancement mechanisms in the recent literature: (i) light scattering, (ii) light concentration, (iii) hot electron injection (HEI), and (iv) plasmon-induced resonance energy transfer (PIRET). (i) Light scattering and (ii) light concentration are light trapping mechanisms that can increase the absorption of light with energies above the semiconductor optical band-edge. These two mechanisms are ideal to enhance the absorption of promising semiconductors with narrow bandgap energies that suffer from limited absorption coefficients and bulk charge recombination. On the other hand, (iii) HEI and the recently discovered (iv) PIRET are mechanisms that can enhance the absorption also below the semiconductor optical band-edge. Therefore, HEI and PIRET have the potential to extend the light utilization to visible and near-infrared wavelengths of semiconductors with excellent electrochemical properties, but with large bandgap energies. New techniques and theories that have been developed to elucidate the above mentioned plasmonic mechanisms are presented and discussed for their application in metal oxide photoelectrodes. Finally, other plasmonic and non-plasmonic effects that do not increase the device absorption, but affect the electrochemical properties of the semiconductor (e.g., charge carrier transport) are also discussed, since a complete understanding of these phenomena is fundamental for the design of an efficient plasmonic NP-semiconductor water splitting device. Funding Agencies|NWO (VENI project); Wenner-Gren Foundations; Swedish Research Council; Swedish Foundation for Strategic Research; Royal Swedish Academy of Sciences; AForsk Foundation; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]
Au–Cu bimetallic thin films with controlled composition were fabricated by magnetron sputtering co-deposition, and their performance for the electrocatalytic reduction of CO2 was investigated. The uniform planar morphology served as a platform to evaluate the electronic effect isolated from morphological effects while minimizing geometric contributions. The catalytic selectivity and activity of Au–Cu alloys was found to be correlated with the variation of electronic structure that was varied with tunable composition. Notably, the d-band center gradually shifted away from the Fermi level with increasing Au atomic ratio, leading to a weakened binding energy of *CO, which is consistent with low CO coverage observed in CO stripping experiments. The decrease in the *CO binding strength results in the enhanced catalytic activity for CO formation with the increase in Au content. In addition, it was observed that copper oxide/hydroxide species are less stable on Au–Cu surfaces compared to those on the pure Cu surface, where the surface oxophilicity could be critical to tuning the binding strength of *OCHO. These results imply that the altered electronic structure could explain the decreased formation of HCOO– on the Au–Cu alloys. In general, the formation of CO and HCOO– as main CO2 reduction products on planar Au–Cu alloys followed the shift of the d-band center, which indicates that the electronic effect is the major governing factor for the electrocatalytic activity of CO2 reduction on Au–Cu bimetallic thin films.
The effect of plasmonic nanoparticles (NPs) on the photoelectrochemical water splitting performance of CuWO 4 is studied here for the first time. CuWO 4 thin films were functionalized with well-defined Au NPs in two composite configurations: with the NPs (I) at the CuWO 4 −electrolyte interface and (II) at the CuWO 4 back contact. In both cases, the incident photon to current conversion efficiency of the film was increased (∼6fold and ∼1.2-fold for configurations I and II (at λ = 390 nm), respectively). Two important advantages of placing the NPs on the CuWO 4 −electrolyte interface are identified: (1) Au NPs, coated with a 2 nm TiO 2 layer, are found to significantly enhance the surface catalysis of the film, decreasing the surface charge recombination from ∼60% to ∼10%, and (2) the NP's near-field can promote additional charge carriers within the space charge layer region, where they undergo field-assisted transport, essentially avoiding recombination. Our study shows that Au NPs, coated with a 2 nm TiO 2 layer, can significantly mitigate the catalytic and optical photoelectrochemical (PEC) limitations of CuWO 4 . An increase from 0.03 to 0.1 mA cm −2 in the water-splitting photocurrent was measured for a 200 nm film under simulated solar irradiation at 1.23 V vs RHE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.