Dissolved manganese (Mn) is a biologically essential element. Moreover, its oxidised form is involved in removing itself and several other trace elements from ocean waters. Here we report the longest thus far 17 500 km length full-depth ocean section of dissolved Mn in the West Atlantic Ocean, comprising 1320 data values of high accuracy. This is the GA02 transect that is part of the GEOTRACES programme, which aims to understand trace element distributions. The goal of this study is to combine these new observations with a new, state-of-the-art, modelling to give a first assessment of the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account for the sources, processes and sinks of Mn in the ocean. Oxidation and (photo)reduction, aggregation, settling, as well as biological uptake and remineralisation by plankton, are included in the model. Our model provides, together with the observations, the following insights: -The high surface concentrations of manganese are caused by the combination of photoreduction and sources to the upper ocean. The most important sources are sediments, dust, and, more locally, rivers. -Observations and model simulations suggest that surface Mn in the Atlantic Ocean moves downwards into the southward flowing North Atlantic Deep Water (NADW), but because of strong removal rates there is no elevated concentration of Mn visible any more in the NADW south of 40 • N.-The model predicts lower dissolved Mn in surface waters of the Pacific Ocean than the observed concentrations. The intense Oxygen Minimum Zone (OMZ) in subsurface waters is deemed to be a major source of dissolved Mn also mixing upwards into surface waters, but the OMZ is not well represented by the model. Improved high resolution simulation of the OMZ may solve this problem.-There is a mainly homogeneous background concentration of dissolved Mn of about 0.10 nM to 0.15 nM throughout most of the deep ocean. The model reproduces this by means of a threshold on particulate manganese oxides of 25 pM, suggesting that a minimal concentration of particulate Mn is needed before aggregation and removal become efficient.-The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment–water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment–water boundary on many TEI cycles, and underline the fact that our knowledge of the source–sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment–water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory.This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.
a b s t r a c tThe concentrations of dissolved aluminium (dissolved Al) were studied along the West Atlantic GEOTRACES GA02 transect from 64°N to 50°S. Concentrations ranged from~0.5 nmol kg −1 in the high latitude surface waters to~48 nmol kg −1 in surface waters around 25°N. Elevated surface water concentrations due to atmospheric dust loading have little influence on the deep water distribution. However, just below the thermocline, both Northern and Southern Hemisphere Subtropical Mode Waters are elevated in Al, most likely related to atmospheric dust deposition in the respective source regions. In the deep ocean, high concentrations of up to 35 nmol kg −1 were observed in North Atlantic Deep Water as a result of Al input via sediment resuspension. Comparatively low deep water concentrations were associated with water masses of Antarctic origin. During water mass advection, Al loss by scavenging overrules input via remineralisation and sediment resuspension at the basin wide scale. Nevertheless, sediment resuspension is more important than previously realised for the deep ocean Al distribution and even more intensive sampling is needed in bottom waters to constrain the spatial heterogeneity in the global deep ocean. This thus far longest (17,500 km) full depth ocean section shows that the distribution of Al can be explained by its input sources and the combination of association with particles and release from those particles at depth, the latter most likely when the particles remineralise. The association of Al with particles can be due to incorporation of Al into biogenic silica or scavenging of Al onto biogenic particles. The interaction between Al and biogenic particles can lead to the coupled cycling of Al and silicate that is observed in some ocean regions. However, in other regions this coupling is not observed due to (i) advective processes bringing in older water masses that are depleted in Al, (ii) unfavourable scavenging conditions in the water column, (iii) low surface concentrations of Al or (iv) additional Al sources, notably sediment resuspension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.