Functional discrimination between structurally similar self and foreign antigens is a main attribute of adaptive immunity. Here we describe two feedback mechanisms in T lymphocytes that together sharpen and amplify initial signaling differences related to the quality of T cell receptor (TCR) engagement. Weakly binding ligands predominantly trigger a negative feedback loop leading to rapid recruitment of the tyrosine phosphatase SHP-1, followed by receptor desensitization through inactivation of Lck kinase. In contrast, strongly binding ligands efficiently activate a positive feedback circuit involving Lck modification by ERK, preventing SHP-1 recruitment and allowing the long-lasting signaling necessary for gene activation. The characteristics of these pathways suggest that they constitute an important part of the mechanism allowing T cells to discriminate between self and foreign ligands.
CD4+ class II–restricted T cells specific for self antigens are thought to be involved in the pathogenesis of most human autoimmune diseases and molecular mimicry between foreign and self ligands has been implicated as a possible mechanism for their activation. In this report we introduce combinatorial peptide libraries as a powerful tool to identify cross-reactive ligands for these T cells. The antigen recognition of a CD4+ T cell clone (TCC) specific for myelin basic protein peptide (MBP) (86-96) was dissected by the response to a set of 220 11-mer peptide sublibraries. Based on the results obtained with the libraries for each position of the antigen, artificial peptides were found that induced proliferative responses at much lower concentrations than MBP(86-96). In addition stimulatory ligands derived from protein sequences of self and microbial proteins were identified, some of them even more potent agonists than MBP(86-96). These results indicate that: (a) for at least some autoreactive CD4+ T cells antigen recognition is highly degenerate; (b) the autoantigen used to establish the TCC represents only a suboptimal ligand for the TCC; (c) a completely random and unbiased approach such as combinatorial peptide libraries can decrypt the spectrum of stimulatory ligands for a T cell receptor (TCR).
Class II histocompatibility molecules associate with peptides derived from antigens that are processed in endocytic compartments. Antigen presentation to class II-restricted T cells generally requires newly synthesized class II molecules, associated invariant chain, and HLA-DM. Exceptions to these rules have been reported, but without description of an underlying mechanism. Here we show that presentation of immunodominant epitopes in the haemagglutinin protein of influenza virus and in myelin basic protein correlates with recycling of surface HLA-DR molecules. Truncation of either one of the alpha or beta cytoplasmic tails virtually eliminated internalization of HLA-DR molecules and presentation of haemagglutinin from inactive virus particles. In contrast, the invariant chain-dependent presentation of matrix antigen from the same virus particles was unaffected by these truncations. Thus HLA-DR cytoplasmic tails are not required for the conventional presentation pathway, but jointly contribute a signal for an alternative pathway involving internalization of HLA-DR molecules.
The pathogenesis of multiple sclerosis (MS) is currently ascribed in part to a T cell-mediated process targeting myelin components. The T cell response to one candidate autoantigen, myelin basic protein (MBP), in the context of HLA-DR15Dw2, has been previously studied in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.