This paper presents an application of a framework for Big Data Analytical Process and Mapping—BAProM—consisting of four modules: Process Mapping, Data Management, Data Analysis, and Predictive Modeling. The framework was conceived as a decision support tool for industrial business, encompassing the whole big data analytical process. The first module incorporates in big data analytical a mapping of processes and variables, which is not common in such processes. This is a proposal that proved to be adequate in the practical application that was developed. Next, an analytical “workbench” was implemented for data management and exploratory analysis (Modules 2 and 3) and, finally, in Module 4, the implementation of artificial intelligence algorithm support predictive processes. The modules are adaptable to different types of industry and problems and can be applied independently. The paper presents a real-world application seeking as final objective the implementation of a predictive maintenance decision support tool in a hydroelectric power plant. The process mapping in the plant identified four subsystems and 100 variables. With the support of the analytical workbench, all variables have been properly analyzed. All underwent a cleaning process and many had to be transformed, before being subjected to exploratory analysis. A predictive model, based on a decision tree (DT), was implemented for predictive maintenance of equipment, identifying critical variables that define the imminence of an equipment failure. This DT model was combined with a time series forecasting model, based on artificial neural networks, to project those critical variables for a future time. The real-world application showed the practical feasibility of the framework, particularly the effectiveness of the analytical workbench, for pre-processing and exploratory analysis, as well as the combined predictive model, proving effectiveness by providing information on future events leading to equipment failures.
From a practical point of view, a turbine load cycle (TLC) is defined as the time a turbine in a power plant remains in operation. TLC is used by many electric power plants as a stop indicator for turbine maintenance. In traditional operations, a maximum time for the operation of a turbine is usually estimated and, based on the TLC, the remaining operating time until the equipment is subjected to new maintenance is determined. Today, however, a better process is possible, as there are many turbines with sensors that carry out the telemetry of the operation, and machine learning (ML) models can use this data to support decision making, predicting the optimal time for equipment to stop, from the actual need for maintenance. This is predictive maintenance, and it is widely used in Industry 4.0 contexts. However, knowing which data must be collected by the sensors (the variables), and their impact on the training of an ML algorithm, is a challenge to be explored on a case-by-case basis. In this work, we propose a framework for mapping sensors related to a turbine in a hydroelectric power plant and the selection of variables involved in the load cycle to: (i) investigate whether the data allow identification of the future moment of maintenance, which is done by exploring and comparing four ML algorithms; (ii) discover which are the most important variables (MIV) for each algorithm in predicting the need for maintenance in a given time horizon; (iii) combine the MIV of each algorithm through weighting criteria, identifying the most relevant variables of the studied data set; (iv) develop a methodology to label the data in such a way that the problem of forecasting a future need for maintenance becomes a problem of binary classification (need for maintenance: yes or no) in a time horizon. The resulting framework was applied to a real problem, and the results obtained pointed to rates of maintenance identification with very high accuracies, in the order of 98%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.