The interior structure of Saturn, the depth of its winds, and the mass and age of its rings constrain its formation and evolution. In the final phase of the Cassini mission, the spacecraft dived between the planet and its innermost ring, at altitudes of 2600 to 3900 kilometers above the cloud tops. During six of these crossings, a radio link with Earth was monitored to determine the gravitational field of the planet and the mass of its rings. We find that Saturn’s gravity deviates from theoretical expectations and requires differential rotation of the atmosphere extending to a depth of at least 9000 kilometers. The total mass of the rings is (1.54 ± 0.49) × 1019 kilograms (0.41 ± 0.13 times that of the moon Mimas), indicating that the rings may have formed 107 to 108 years ago.
Tidal effects in planetary systems are the main driver in the orbital migration of natural satellites. They result from physical processes occurring deep inside celestial bodies, whose effects are rarely observable from surface imaging. For giant planet systems, the tidal migration rate is determined by poorly understood dissipative processes in the planet, and standard theories suggest an orbital expansion rate inversely proportional to the power 11/2 in distance 1 , implying little migration for outer moons such as Saturn's largest moon, Titan. Here, we use two independent measurements obtained with the Cassini spacecraft to measure Titans orbital expansion rate. We find Titan migrates away from Saturn at 11.3 ± 2.0 cm/year, corresponding to a tidal quality factor of Saturn of Q ' 100, and a migration timescale of roughly 10 Gyr. This rapid orbital expansion suggests Titan formed significantly closer to Saturn and has migrated outward to its current position. Our results for Titan and five other moons agree with the predictions of a resonance locking tidal theory 2 , sustained by excitation of inertial waves inside the planet. The associated tidal expansion is only weakly sensitive to orbital distance, motivating a revision of the evolutionary history of Saturns moon system. The resonance locking mechanism could operate in other systems such as stellar binaries and exoplanet systems, and it may allow for tidal dissipation to occur at larger orbital separations than previously believed.Saturn is orbited by 62 moons, and the intricate dynamics of this complex system provide clues about its formation and evolution. Of crucial importance are tidal interactions between the moons and the planet. Each moon raises a tidal bulge in the planet, and because Saturn rotates faster than the moons orbit, frictional processes within the planet cause the tidal bulge to lead in front of each moon. Each moon's tidal bulge pulls the moon forward such that it gains angular momentum and migrates outward, similar to the tidal evolution of the Earth-Moon system. However, in giant planets such as Saturn, the dissipative processes that determine the bulge lag 2
The Juno spacecraft reached the mid‐point of its nominal mission in December 2018, after completing 17 perijove passes. Ten of these were dedicated to the determination of the gravity field of the planet, with the aim of constraining its interior structure. We provide an update on Jupiter's gravity field, its tidal response and spin axis motion over time. The analysis of the Doppler data collected during the perijove passes hints to a non‐static and/or non‐axially symmetric field, possibly related to several different physical mechanisms, such as normal modes or localized atmospheric or deeply‐rooted dynamics.
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s−1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m−3, we find that the expected value of the momentum enhancement factor, β, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m−3, $${\beta =3.61}_{-0.25}^{+0.19}(1\sigma )$$ β = 3.61 − 0.25 + 0.19 ( 1 σ ) . These β values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.