Thickness-shear transducers for guided wave testing have been used in industry for over two decades and much research has been conducted to improve the resolution and sensitivity. Due to a geometric feature of the current state-of-the art transducer, there is an out-of-plane component in the propagation direction of the fundamental shear horizontal mode which complicates the signal interpretation. In such case, complex signal processing techniques need to be used for mode discrimination to assess the structural health with higher precision. Therefore, it is important to revise the transducer design to eliminate the out-of-plane components in the propagation direction of fundamental shear horizontal mode. This will enhance the mode purity of fundamental shear horizontal mode for its application in guided wave inspection. A numerical investigation has been conducted on a 3 mm thick 2 m circular steel plate to understand the behaviour and the characteristics of the state-of-the-art thickness-shear transducer. Based on the results, it is noted that the redesigning the electrode arrangement will suppress the out-of-plane components on the propagation direction of the fundamental shear horizontal mode. With the aid of this information current state-of-the-art transducers were redesigned and tested in laboratory conditions using the 3D Laser Doppler Vibrometer. This information will aid future transducer designers improve the resolution of thickness-shear transducers for guided wave applications and reduce the weight and cost of transducer array by eliminating the need of additional transducers to suppress spurious modes.
Arrays of dry-coupled thickness-shear transducers are often employed in the guided wave sector to inspect pipelines and plate-like structure. The dry coupling permits to dismiss any coupling material between the transducer and the waveguide, but as a drawback a preload must be applied on the transducers to guarantee an effective coupling between the two surfaces. Although the influence of the preload on the natural frequencies is studied in the literature, the frequency response function of a transducer relating the input voltage to the displacement output is not present in the literature. Moreover, the distribution of force on the backing mass and the effect of the preload on the uniformity of vibration of the transducers are still missing. A natural frequency analysis and a forced analysis are then computed numerically with finite element analysis to quantify the influence of the preload on a thickness-shear transducer. Furthermore, these results are compared with experimental results obtained with a Laser Vibrometer. It is then shown how the geometrical layout of the transducer coupled with the preload influences the vibration of the transducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.