The effects of electroosmotic flow (EOF) on the ionic current rectification (ICR) phenomenon in conical nanopores are studied comprehensively with use of a continuum model, composed of Nernst−Planck equations for the ionic concentrations, the Poisson equation for the electric potential, and Navier−Stokes equations for the flow field. It is found that the preferential current direction of a negatively charged nanopore is toward the base (tip) under a relatively high (low) κR
t, the ratio of the tip radius size to the Debye length. The direction also changes with the charge polarity of the nanopore. The EOF effect on the ionic current rectification ratio in a conical nanopore becomes noticeable at an intermediate κR
t and surface charge density of the nanopore, meanwhile increasing significantly with the applied voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.