This paper describes an experimental study on the effect of reducing time series collected from IoT electrical agro-sensors through approximation techniques, in time series classification tasks, for plant stress detection. From large sets of real data, stored in time series format, experiments were carried out to analyze: (i) performance of mathematical methods to reduce the dimensionality of time series - PAA, SAX and MCB; and (ii) Whether the application of these techniques influences the performance of time series classification models for plant stress detection, using machine learning algorithms KNN, SVM and ANN. Both in terms of data volume reduction and time series classification, the experiment showed significant improvements in terms of compression rate and accuracy, with the best result found in the use of PAA+SAX techniques for reduction and SVM for classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.