Sexual reproduction occurs in two fundamentally different ways: by outcrossing, in which two distinct partners contribute nuclei, or by self-fertilization (selfing), in which both nuclei are derived from the same individual. Selfing is common in flowering plants, fungi, and some animal taxa. We investigated the genetic basis of selfing in the homothallic fungus Aspergillus nidulans. We demonstrate that alpha and high-mobility group domain mating-type (MAT) genes, found in outcrossing species, are both present in the genome of A. nidulans and that their expression is required for normal sexual development and ascospore production. Balanced overexpression of MAT genes suppressed vegetative growth and stimulated sexual differentiation under conditions unfavorable for sex. Sexual reproduction was correlated with significantly increased expression of MAT genes and key genes of a pheromone-response MAP-kinase signaling pathway involved in heterothallic outcrossing. Mutation of a component MAP-kinase mpkB gene resulted in sterility. These results indicate that selfing in A. nidulans involves activation of the same mating pathways characteristic of sex in outcrossing species, i.e., self-fertilization does not bypass requirements for outcrossing sex but instead requires activation of these pathways within a single individual. However, unlike heterothallic species, aspects of pheromone signaling appeared to be independent of MAT control.
The recently completed genome sequence of the model plant species Arabidopsis has been estimated to encode over 25,000 proteins, which, on the basis of their function, can be classified into structural and metabolic (the vast majority of plant proteins), protective proteins, which defend a plant against invasion by pathogens or feeding by pests, and storage proteins, which proved a nutrient store to support germination in seeds. It is now clear that almost all plant food allergens are either protective or storage proteins. It is also becoming evident that those proteins that trigger the development of an allergic response through the gastrointestinal tract belong primarily to two large protein superfamilies: (1) The cereal prolamin superfamily, comprising three major groups of plant food allergens, the 2S albumins, lipid transfer proteins, and cereal alpha-amylase/trypsin inhibitors, which have related structures, and are stable to thermal processing and proteolysis. They include major allergens from Brazil nut, peanuts, fruits, such as peaches, and cereals, such as rice and wheat; (2) The cupin superfamily, comprising the major globulin storage proteins from a number of plant species. The globulins have been found to be allergens in plant foods, such as peanuts, soya bean, and walnut; (3) The cyteine protease C1 family, comprising the papain-like proteases from microbes, plants, and animals. This family contains two notable allergens that sensitize via the GI tract, namely actinidin from kiwi fruit and the soybean allergen, Gly m Bd 30k/P34. This study describes the properties, structures, and evolutionary relationships of these protein families, the allergens that belong to them, and discusses them in relation to the role protein structure may play in determining protein allergenicity.
A method is described for the detection of certain nucleotide modifications adjacent to the 5' 7-methyl guanosine cap of mRNAs from individual genes. The method quantitatively measures the relative abundance of 2'-O-methyl and N6,2'-O-dimethyladenosine, two of the most common modifications. In order to identify and quantitatify the amounts of N6,2'-O-dimethyladenosine, a novel method for the synthesis of modified adenosine phosphoramidites was developed. This method is a one step synthesis and the product can directly be used for the production of N6,2'-O-dimethyladenosine containing RNA oligonucleotides. The nature of the cap-adjacent nucleotides were shown to be characteristic for mRNAs from individual genes transcribed in liver and testis.
Objective: In countries where parasitic infections are endemic, autoimmune disease is relatively rare, leading to the hypothesis that parasite-derived immunomodulators may protect against its development. Consistent with this, we have previously demonstrated that ES-62, a 62 kDa phosphorylcholine (PC)-containing glycoprotein that is secreted by filarial nematodes, can exert antiinflammatory action in the murine collagen-induced arthritis (CIA) model and human rheumatoid arthritisderived synovial tissue cultures. As a first step to developing ES-62-based drugs, the aim of this study was to determine whether the PC-moiety of ES-62 was responsible for its anti-inflammatory actions. Methods: We compared the anti-inflammatory activity of a PC-free form of recombinant ES-62 (rES-62) and a synthetic PC-ovalbumin conjugate (OVA-PC) with that of native ES-62 in the CIA model and synovial tissues from patients with rheumatoid arthritis.
We have cloned and expressed genes encoding the allergenic brazil nut 2 S albumin (Ber e 1) and the sunflower albumin 8 (SFA8) in the methylotrophic yeast Pichia pastoris. We show that both proteins were secreted at high levels and that the purified proteins were properly folded. We also showed that Ber e 1 is glycosylated during secretion and that the glycan does not interfere with the folding or immunoreactivity. The disulphide map of the Ber e 1 protein was experimentally established and is in agreement with the conserved disulphide structure of other members of the 2 S albumin family. A model three-dimensional structure of the allergen was generated. During the expression studies and through mutation we have also shown that alteration of the sequences around the Kex2 endoproteolytic processing site in the expressed fusion protein can compromise the secretion by targeting part of the protein for possible degradation. The secreted production of these properly folded sulphurrich plant albumins presents an opportunity to delineate the attributes that make an allergen and to facilitate the diagnosis and therapy of type I allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.