Abstract. With the exponential growth of moving objects data to the Gigabyte range, it has become critical to develop effective techniques for indexing, updating, and querying these massive data sets. To meet the high update rate as well as low query response time requirements of moving object applications, this paper takes a novel approach in moving object indexing. In our approach we do not require a sophisticated index structure that needs to be adjusted for each incoming update. Rather we construct conceptually simple short-lived throwaway indexes which we only keep for a very short period of time (sub-seconds) in main memory. As a consequence, the resulting technique MOVIES supports at the same time high query rates and high update rates and trades this for query result staleness. Moreover, MOVIES is the first main memory method supporting time-parameterized predictive queries. To support this feature we present two algorithms: non-predictive MOVIES and predictive MOVIES. We obtain the surprising result that a predictive indexing approach -considered state-of-the-art in an external-memory scenario -does not scale well in a main memory environment. In fact our results show that MOVIES outperforms state-of-the-art moving object indexes like a main-memory adapted B x -tree by orders of magnitude w.r.t. update rates and query rates. Finally, our experimental evaluation uses a workload unmatched by any previous work. We index the complete road network of Germany consisting of 40,000,000 road segments and 38,000,000 nodes. We scale our workload up to 100,000,000 moving objects, 58,000,000 updates per second and 10,000 queries per second which is unmatched by any previous work.
With the exponential growth of moving objects data to the Gigabyte range, it has become critical to develop effective techniques for indexing, updating, and querying these massive data sets. To meet the high update rate as well as low query response time requirements of moving object applications, this paper takes a novel approach in moving object indexing. In our approach, we do not require a sophisticated index structure that needs to be adjusted for each incoming update. Rather, we construct conceptually simple short-lived index images that we only keep for a very short period of time (sub-seconds) in main memory. As a consequence, the resulting technique MOVIES supports at the same time high query rates and high update rates, trading this property for query result staleness. Moreover, MOVIES is the first main memory method supporting time-parameterized predictive queries. To support this feature, we present two algorithms: non-predictive MOVIES and predictive MOVIES. We obtain the surprising result that a predictive indexing approachconsidered state-of-the-art in an external-memory scenario-does not scale well in a main memory environment. In fact, our results show that MOVIES outperforms stateof-the-art moving object indexes such as a main-memory adapted B x -tree by orders of magnitude w.r.t. update rates and query rates. In our experimental evaluation, we index the complete road network of Germany consisting of 40,000,000 road segments and 38,000,000 nodes. We scale our workload up to 100,000,000 moving objects, 58,000,000 updates per second and 10,000 queries per second, a scenario at a scale unmatched by any previous work.
The joint EDBT/ICDT conference (International Conference on Extending Database Technology / International Conference on Database Theory) is a well established conference series on data management, with annual meetings in the second half of March that attract 250 to 300 delegates. Three weeks before EDBT/ICDT 2020 was planned to take place in Copenhagen, the rapidly developing Covid-19 pandemic led to the decision to cancel the face-to-face event. In the interest of the research community, it was decided to move the conference online while trying to preserve as much of the real-life experience as possible. As far as we know, we are one of the first conferences that moved to a fully synchronous online experience due to the COVID- 19 outbreak. By fully synchronous, we mean that participants jointly listened to presentations, had live Q&A, and attended other live events associated with the conference. In this report, we share our decisions, experiences, and lessons learned.
Massive amounts of satellite data have been gathered over time, holding the potential to unveil a spatiotemporal chronicle of the surface of Earth. These data allow scientists to investigate various important issues, such as land use changes, on a global scale. However, not all land-use phenomena are equally visible on satellite imagery. In particular, the creation of an inventory of the planet's road infrastructure remains a challenge, despite being crucial to analyze urbanization patterns and their impact. Towards this end, this work advances datadriven approaches for the automatic identification of roads based on open satellite data. Given the typical resolutions of these historical satellite data, we observe that there is inherent variation in the visibility of different road types. Based on this observation, we propose two deep learning frameworks that extend state-ofthe-art deep learning methods by formalizing road detection as an ordinal classification task. In contrast to related schemes, one of the two models also resorts to satellite time series data that are potentially affected by missing data and cloud occlusion. Taking these time series data into account eliminates the need to manually curate datasets of high-quality image tiles, substantially simplifying the application of such models on a global scale. We evaluate our approaches on a dataset that is based on Sentinel 2 satellite imagery and OpenStreetMap vector data. Our results indicate that the proposed models can successfully identify large and medium-sized roads. We also discuss opportunities and challenges related to the detection of roads and other infrastructure on a global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.