Most patients with multiple myeloma treated with current therapies, including immunomodulatory drugs, eventually develop relapsed/refractory disease. Clinical activity of lenalidomide relies on degradation of Ikaros and the consequent reduction in IRF4 expression, both required for myeloma cell survival and involved in the regulation of MYC transcription. Thus, we sought to determine the combinational effect of an MYC-interfering therapy with lenalidomide/dexamethasone. We analyzed the potential therapeutic effect of the combination of the BET bromodomain inhibitor CPI203 with the lenalidomide/dexamethasone regimen in myeloma cell lines. CPI203 exerted a dose-dependent cell growth inhibition in cell lines, indeed in lenalidomide/dexamethasone-resistant cells (median response at 0.5 μM: 65.4%), characterized by G1 cell cycle blockade and a concomitant inhibition of MYC and Ikaros signaling. These effects were potentiated by the addition of lenalidomide/dexamethasone. Results were validated in primary plasma cells from patients with multiple myeloma co-cultured with the mesenchymal stromal cell line stromaNKtert. Consistently, the drug combination evoked a 50% reduction in cell proliferation and correlated with basal Ikaros mRNA expression levels (P=0.04). Finally, in a SCID mouse xenotransplant model of myeloma, addition of CPI203 to lenalidomide/dexamethasone decreased tumor burden, evidenced by a lower glucose uptake and increase in the growth arrest marker GADD45B, with simultaneous downregulation of key transcription factors such as MYC, Ikaros and IRF4. Taken together, our data show that the combination of a BET bromodomain inhibitor with a lenalidomide-based regimen may represent a therapeutic approach to improve the response in relapsed/refractory patients with multiple myeloma, even in cases with suboptimal prior response to immunomodulatory drugs.
Mechanisms of immune regulation may control proliferation of aberrant plasma cells (PCs) in patients with monoclonal gammopathy of undetermined significance (MGUS) preventing progression to active multiple myeloma (MM). We hypothesized that CD85j (), an inhibitory immune checkpoint for B cell function, may play a role in MM pathogenesis. In this study, we report that patients with active MM had significantly lower levels of CD85j and its ligand S100A9. Decreased CD85j expression could also be detected in the premalignant condition MGUS, suggesting that loss of CD85j may be an early event promoting tumor immune escape. To gain insight into the molecular mechanisms underlying CD85j functions, we next enforced expression of CD85j in human myeloma cell lines by lentiviral transduction. Interestingly, gene expression profiling of CD85j-overexpressing cells revealed a set of downregulated genes with crucial functions in MM pathogenesis. Furthermore, in vitro functional assays demonstrated that CD85j overexpression increased susceptibility to T cell- and NK-mediated killing. Consistently, ligation of CD85j decreased the number of PCs from individuals with MGUS but not from patients with MM. In conclusion, downregulation of inhibitory immune checkpoints on malignant PCs may provide a novel mechanism of immune escape associated with myeloma pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.