Consolidation of first remission with (90)Y-ibritumomab tiuxetan in advanced-stage follicular lymphoma is highly effective with no unexpected toxicities, prolonging PFS by 2 years and resulting in high PR-to-CR conversion rates regardless of type of first-line induction treatment.
In chronic lymphocytic leukemia (CLL), TP53 gene defects, due to deletion of the 17p13 locus and/or mutation(s) within the TP53 gene, are associated with resistance to chemoimmunotherapy and a particularly dismal clinical outcome. On these grounds, analysis of TP53 aberrations has been incorporated into routine clinical diagnostics to improve patient stratification and optimize therapeutic decisions. The predictive implications of TP53 aberrations have increasing significance in the era of novel targeted therapies, i.e., inhibitors of B-cell receptor (BcR) signaling and anti-apoptotic BCL2 family members, owing to their efficacy in patients with TP53 defects. In this report, the TP53 Network of the European Research Initiative on Chronic Lymphocytic Leukemia (ERIC) presents updated recommendations on the methodological approaches for TP53 mutation analysis. Moreover, it provides guidance to ensure that the analysis is performed in a timely manner for all patients requiring treatment and that the data is interpreted and reported in a consistent, standardized, and accurate way. Since next-generation sequencing technologies are gaining prominence within diagnostic laboratories, this report also offers advice and recommendations for the interpretation of TP53 mutation data generated by this methodology.
Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These “dormant” origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.