In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.
RESUMEN:Se realizó un estudio pormenorizado del proceso de soldeo fuerte en horno de alto vacío de la aleación base níquel Hastelloy B2 fortalecida por solución sólida. En una primera fase del trabajo se seleccionó el material de aporte acorde al material objeto de unión y a la fuente de calentamiento seleccionada. Posteriormente, se evaluó la influencia del gap (50 y 200 micrómetros) y tiempo de permanencia a temperatura de soldeo (10 y 90 minutos) sobre los microconstituyentes de la unión, relacionando la microestructura con las propiedades mecá-nicas de la junta. Los análisis metalográficos mostraron una unión constituida por una matriz rica en níquel, siliciuros de níquel y compuestos ternarios. Finalmente, los resultados de los ensayos mecánicos a esfuerzos cortantes mostraron una elevada resistencia para gaps de 50 micrómetros y tiempos de permanencia de 90 minutos.PALABRAS CLAVE: Hastelloy; Níquel; Soldadura fuerte; Vacío Citation / Cómo citar este artículo: Sotelo, J.C., González, M., Porto, E. (2014) "Influencia de los parámetros de soldeo fuerte en la microestructura y propiedades mecánicas de la unión de la aleación base níquel Hastelloy B2". Rev. Metal. 50(3): e019. doi: http://dx.doi.org/10.3989/revmetalm.019.
ABSTRACT: Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy.A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.