West African land use systems have been experiencing one of the fastest transformations in the world over recent decades. The Sudanian savanna is an interesting example, as it hosts the cultivation of some crops typical of the Guinean savanna as well as some of the Sahel. Therefore, this region is likely to experience further changes in its crop portfolio over the next decades due to crop migration processes responding to environmental change. Simulation approaches can guide the development of agricultural production strategies that contribute to sustainably optimize both food and fuel production. This study used crop models already available in the APSIM platform to simulate plant production and the soil water and nutrient cycles of plots cultivated with groundnut, millet, sorghum, maize, and rice on three (two upland and one lowland) soil fertility classes and subjected to five levels of management (conventional tillage without residue incorporated to the soil and nor fertilizer application; conventional tillage without residue incorporated to the soil and 5 kg N ha−1; conventional tillage with residue incorporated to the soil 20 kg N ha−1, and no-till herbicide treated with 50 and 100 kg N ha−1). Simulation outputs were contrasted against data reported in the literature and converted into nutritional, fuel and feed yields based on the qualities and uses of their different plant comparments. Groundnut yields outperformed all of the cereals across most growing conditions, nutritional and feed indicators. Maize and rice provided the highest caloric yields, with the least fertile growing conditions. Sorghum provided average to high caloric and iron yields across all of the treatments. Millet provided the highest iron yields and high fuel yields across most treatments. Some simulated treatments could not be compared against literature review data because of their absence in actual cropping systems and the lack of experimental data. Plant production was simulated with higher accuracy than the other components of the simulation. In particular, there is a need to better parameterize and validate the rice, groundnut and millet models under Sudanian savanna conditions in order to perform more accurate comparative assessments among species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.