Task-based programming models like OmpSs-2 and OpenMP provide a flexible data-flow execution model to exploit dynamic, irregular and nested parallelism. Providing an efficient implementation that scales well with small granularity tasks remains a challenge, and bottlenecks can manifest in several runtime components. In this paper, we analyze the limiting factors in the scalability of a task-based runtime system and propose individual solutions for each of the challenges, including a wait-free dependency system and a novel scalable scheduler design based on delegation. We evaluate how the optimizations impact the overall performance of the runtime, both individually and in combination. We also compare the resulting runtime against state of the art OpenMP implementations, showing equivalent or better performance, especially for fine-grained tasks.CCS Concepts: • Computing methodologies → Parallel programming languages.
Shared memory programming models usually provide worksharing and task constructs. The former relies on the efficient fork-join execution model to exploit structured parallelism; while the latter relies on fine-grained synchronization among tasks and a flexible data-flow execution model to exploit dynamic, irregular, and nested parallelism. On applications that show both structured and unstructured parallelism, both worksharing and task constructs can be combined. However, it is difficult to mix both execution models without penalizing the data-flow execution model. Hence, on many applications structured parallelism is also exploited using tasks to leverage the full benefits of a pure data-flow execution model. However, task creation and management might introduce a non-negligible overhead that prevents the efficient exploitation of fine-grained structured parallelism, especially on many-core processors. In this work, we propose worksharing tasks. These are tasks that internally leverage worksharing techniques to exploit fine-grained structured loop-based parallelism. The evaluation shows promising results on several benchmarks and platforms.
Exascale systems will contain multicore/manycore processors with high core count in each node. Therefore, using a model that relaxes the synchronization, such as data-flow, is crucial to adequately exploit the potential of the hardware. The flexibility of the data-flow execution model relies on the dynamic management of data-dependences among tasks. The OpenMP standard already provides a construct, known as taskloop, that distributes the loop iteration space into several tasks, but this construct does not support the use of the depend clause yet. In this paper we propose the use of the induction variable to define data dependences in tasks created by the taskloop construct. By using the induction variable, each task will contain its own dependences based on the partition of work they received. We also aim to demonstrate that using taskloop with dependences provides an enhancement in terms of programmability with respect to using stand-alone tasks to parallelize a loop. Our implementation does not introduce any significant overhead on the taskloop implementation and, in certain cases, it outperforms the stand-alone task version.
Hybrid programming is a promising approach to exploit clusters of multicore systems. Our focus is on the combination of MPI and tasking. This hybrid approach combines the lowlatency and high throughput of MPI with the flexibility of tasking models and their inherent ability to handle load imbalance. However, combining tasking with standard MPI implementations can be a challenge. The Task-Aware MPI library (TAMPI) eases the development of applications combining tasking with MPI. TAMPI enables developers to overlap computation and communication phases by relying on the tasking data-flow execution model. Using this approach, the original computation that was distributed in many different MPI ranks is grouped together in fewer MPI ranks, and split into several tasks per rank. Nevertheless, programmers must be careful with task granularity. Too finegrained tasks introduce too much overhead, while too coarsegrained tasks lead to lack of parallelism. An adequate granularity may not always exist, especially in distributed environments where the same amount of work is distributed among many more cores. Worksharing tasks are a special kind of tasks, recently proposed, that internally leverage worksharing techniques. By doing so, a single worksharing task may run in several cores concurrently. Nonetheless, the task management costs remain the same than a regular task. In this work, we study the combination of worksharing tasks and TAMPI on distributed environments using two well known mini-apps: HPCCG and LULESH. Our results show significant improvements using worksharing tasks compared to regular tasks, and to other state-of-the-art alternatives such as OpenMP worksharing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.