Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel.
In this paper, we present a set of techniques for the evaluation of brain tissue classifiers on a large data set of MR images of the head. Due to the difficulty of establishing a gold standard for this type of data, we focus our attention on methods which do not require a ground truth, but instead rely on a common agreement principle. Three different techniques are presented: the Williams' index, a measure of common agreement; STAPLE, an Expectation Maximization algorithm which simultaneously estimates performance parameters and constructs an estimated reference standard; and Multidimensional Scaling, a visualization technique to explore similarity data. We apply these different evaluation methodologies to a set eleven different segmentation algorithms on forty MR images. We then validate our evaluation pipeline by building a ground truth based on human expert tracings. The evaluations with and without a ground truth are compared. Our findings show that comparing classifiers without a gold standard can provide a lot of interesting information. In particular, outliers can be easily detected, strongly consistent or highly variable techniques can be readily discriminated, and the overall similarity between different techniques can be assessed. On the other hand, we also find that some information present in the expert segmentations is not captured by the automatic classifiers, suggesting that common agreement alone may not be sufficient for a precise performance evaluation of brain tissue classifiers.
Theory and Methods: A spatio-temporal regularized, groupwise, non-rigid registration method based on a B-splines deformation model and a least squares metric is used to estimate and to compensate the movement of the heart in breath-hold cine acquisitions and to obtain a quasi-static sequence with highly sparse representation in temporally transformed domains.Results: Short axis in vivo datasets are used for validation, both original multi-coil as well as DICOM data. Fully sampled data were retrospectively undersampled with various acceleration factors and reconstructions were compared with the two well-known methods k-t FOCUSS and MASTeR. The proposed method achieves higher signal to error ratio and structure similarity index for medium to high acceleration factors.
Conclusions:Reconstruction methods based on groupwise registration show higher quality reconstructions for cardiac cine images than the pairwise counterparts tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.