In the present review, I advance the concept that "cysteinet" is impaired in Parkinson's disease resulting in a functional and structural dysregulation of the matrix of interconnected cysteine-bearing proteins, which in conjunction with reactive species and glutathione regulate the cellular bioenergetic metabolism, the redox homeostasis, and the cellular survival. This network may represent an ancestral down-top system composed of a complex matrix of proteins with very different cellular functions, but bearing the same regulatory thiol radical. Finally, the possible role of N-acetylcysteine and derivatives to regulate "cysteinet" and slow down Parkinson's disease development and progression is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.